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Introduction

“How many is enough?” is a question that epidemiologists 
and clinicians ask themselves when they plan on conduct-
ing a new study.  Researchers want to enroll a large 

enough number of people such that statistical errors (type I and 
type II) are minimized yet the cost, labor, and time to do the study 
remain acceptable. Sample size calculations often remind us of 
complex formulas.  While we provide some formulas in the text, 
the main aim of the article is not to offer a long list of such formu-
las.  Rather, the main aim is to discuss the statistical principles 
behind sample size calculation, issues that may make such calcu-
lations not-so-straightforward, and nonstatistical considerations in 
sample size determination.  Therefore, in this article, we discuss 
the following topics: 

1. The need to calculate sample size;
2. Principles;
3. Some formulas;
4. Factors that need to be determined for sample size calcula-

tions; 
5. Assumptions made for sample size calculations; 
6. Nonstatistical considerations;
7. Methods used to calculate sample size; and
8. Software used to calculate sample size.  

sections together.  

1- The need to calculate sample size
When we would like to learn about an attribute of a population, 

such as mean cholesterol of the people of China, it may not be 
feasible for us to study the entire population due to cost or time 
issues.  Besides cost and time issues, it may not be ethical to study 

the entire population if accurate enough results could be obtained 
by studying a subgroup of all people.  For these reasons, we need 
to study a sample of the population.  

However, results vary from sample to sample, and they may be 
somewhat different from the true mean of the population.  For 
example, one sample of 100 Chinese people may have a mean 
cholesterol of 182 mg/dL and another sample may have a mean 
of 186 mg/dL.  Nevertheless, as the sample size grows, the prob-
ability of obtaining a result that is close to the true mean for the 
population increases.  The question is how large the sample size 
should be to make it very likely for the sample results to be within 
a narrow distance from the true mean.  The answer is discussed in 
the next few sections.  First, we start with some general principles, 
and then we go into more details.   

2- Principles
Although sample size depends on many factors, there are certain 

principles that apply to nearly all sample size calculations, which 
we discuss in this section.  Sample size nearly always depends on 
the factors discussed below. 

 
2-1- Variation
 The more variation there is in the variable of interest, the larger 

is the required sample size.   If there is no variation, even a sample 
size of n = 1 is adequate. 

Example 1:  We want to determine the mean salary of all interns 
in a hospital.  If all interns receive exactly the same salary (e.g., 
$40,000 annually), knowing the salary of only one intern is ad-

Example 2:  There is a disease that is universally fatal, which 
is equivalent to saying that there is no variation in its outcomes in 
terms of death and life. Now if a new drug cures only one case of 
this disease, assuming that the diagnosis is correct, that one single 

2-2- Magnitude of error that we accept
The less the magnitude of the error that we accept, the larger is 

the needed sample size.  This is somewhat intuitive: larger sample 
size is the price that we pay for less error.

Example 3:  A researcher wants to determine the mean height 
of a population.  Any sample would most likely estimate the mean 
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height with some error.  For example, if the real mean height of 
the entire population is 182.3 cm, a sample may estimate it as 
182.5 mm, which has a 2 mm error.  If we want to be relatively 
certain that our sample mean has no more than 1 mm of error, the 
required sample size is much larger than when we accept an error 

2-3-  Probability of making a certain magnitude of error
The smaller the probability of the error, the larger the sample 

size should be.  Consider Example 3. We are never sure that the 
error is necessarily going to be less than 1 mm.  In a large popula-
tion, there are many tall people.  It could turn out that a random 
sample, however large, have a mean height of 3 mm higher than 
the entire population.  We can only increase the sample size to the 
extent that with a large probability, e.g., 95% or 99%, the sample 
mean be within 1 mm from the true population mean.  If we want 
99% certainty, we would need a larger sample size than we accept 
95% certainty. This is again somewhat intuitive, as larger sam-
ple size is the price we pay for more certainty.  For more details, 
please see Example 6. 

 
3- Some formulas
Each study is unique and needs its own formula.  However, to 

provide some examples and to illustrate the principles mentioned 
above, we will provide formulas for three cases: 1) estimating the 
mean height in a population; 2) comparing the effects of two treat-
ments on mean blood pressure; and 3) comparing the effects of 
two treatments on mortality.

   
3-1- Estimating mean height
We want to determine the mean height of men aged 18 or above 

in a very large population.  Here, the required sample size de-
pends on three factors:  1) the variance of height in men aged 18 

2); 2) the maximum magnitude of error that we accept 
(d); and 3) the probability that our error will be higher than the 

to calculate sample size for this study:  

n=
d2

(Z1- /2)
2
( 2)

Now, we discuss how each of these elements is related to the 
principles discussed in Section 2. 

2)
According to the formula, the more variation in height, the larger 

our sample size should be.  This is in line with Principle 1 in Sec-
tion 2 (Principle 2-1).    

-
ing.  Determining the variance of height in the entire population 
depends on knowing its mean.  Since we don’t have the mean 
(otherwise we wouldn’t do the study!), we cannot know the vari-
ance, so we can only estimate it, which is subject to some error.  

Example 4:  What number do we use for variance to estimate 
the mean height of the population?  If we assume that height is 
normally distributed, 95% of the values of height in the popula-
tion will fall in the range of mean ± two standard deviations, in 
other words in a range of four standard deviations.  Therefore, if 
the height of 95% of the people falls roughly between 160 cm and 
200 cm, it is reasonable to assume that the population standard de-

assumption, one can assume that the real standard deviation may 
be 12 cm, which increases the required sample size.   Researchers 

  
3-1-2- The acceptable maximum error (d)
According to the formula, d is in the denominator. Therefore, the 

less error we accept, the larger the sample size should be.  This is 
consistent with Principle 2-2.  

Example 5:  The researchers may decide that they would like 

means that if our results show a mean height of 178 cm, we hope 
that the true number is between 177 cm and 179 cm.  To show the 
effect of d

a maximum error of 1 cm, our sample size needs to be 400 (4 × 

Example 5, in addition to illustrating the effect of acceptable er-
ror, shows that determination of sample size is not entirely clear-
cut.  One can substantially increase or decrease sample size by 
changing one of these factors, particularly by changing the ac-
ceptable error. 

 

As mentioned earlier, there is always a probability that our error 
is larger than d
it, (Z1- /2

) , or simply Z, appears in the formula.  The smaller is 

needs a larger Z, and consequently a larger sample size.  This is 
consistent with Principle 2-3. 

Example 6:

-
ing the probability of error requires a larger Z and hence a larger 

-
quired sample size is not entirely clear-cut.  This is a lesson that 
we learnt from choice of d too. 

If you feel that you have had enough of formulas, you can skip 
the rest of this section and go to Section 4.  However, if you are 
interested in reading two more examples, go through Sections 3-2 
and 3-3.

3-2- Comparing mean blood pressures
Suppose a study has one clearly-stated main objective: “To com-

pare mean systolic blood pressures between patients receiving six 
months of treatment X versus those receiving six months of treat-
ment Y”.   In this example, the formula is slightly more complex 
than the formula shown in Section 3-1, but many of the elements 
are common among the two.  The sample size depends on four 

2); 2) 
the minimum difference that we would like to detect between the 

formula could be used to calculate sample size for each treatment 
group:  

n= d2

(Z1- /2+ Z1- )2
( 2

1 
2
2 )
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Now, we discuss the application and the intuitive meaning of 
each of the factors in this formula.

2)
As discussed in Principle 2-1, sample size should be larger when 

variance of the blood pressure reduction is larger.  Conversely, if 
there is no variation, for example if treatments X and Y decrease 
blood pressure in each participant by exactly 25 mmHg and 20 
mmHg, we could accurately estimate the difference with only one 
person in each treatment group.

 
3-2-2- The minimum difference that we would like to 

detect (d)
In general, detecting a large difference requires a small sample 

size but detecting a small difference requires a large sample size.  
This is in line with Principle 2-2. 

Finding the right d to put into the formula is challenging.  Before 
the study, we don’t know what the difference between the two 
treatments is.  Therefore, we ask ourselves:  “What is the small-

differences between the two treatments, e.g., 10 mmHg, then the 
sample size wouldn’t need to be that large.  However, if we want 
to observe even very small differences, e.g., 1 mmHg, then sam-
ple size should be much larger, 100 times larger than that needed 
for the former situation.  

It is intuitively understandable that detecting smaller differences 
requires larger sample sizes.  Suppose you want to compare two 
students for their English spelling.  If the difference between the 
two students is large, i.e., one student’s spelling is far better than 
the other one, you could perhaps see the difference by asking only 
10 questions.  On the other hand, if both students are very strong 
and the difference is minimal, you may need to test them with 200 
questions before you learn who is better. 

  

Type I error occurs when we erroneously reject the null hypoth-
esis.  To make it simpler and more relevant to our own example, 
type I error occurs if in truth (i.e., if one studies the entirety of our 
target population) the two treatments affect the mean blood pres-

where in reality there is no difference.  Such errors may happen 
due to sampling variation.  Thinking about tossing a coin (rather 
than blood pressure) may make it easier to understand.

Example 7:  Let’s say we want to know whether two coins are 
different with regards to their shape, such that the percentage of 
the heads for each of the coins is different.  To learn this, we toss 
the two coins several times, compare the percentage of the heads, 
and perform statistical tests. However, in a single study, two com-

results, which is a type I error.  
To understand what was said above, let’s change the experiment.  

of 10 (20%).  Toss the same coin another 10 times, and you may 
get nine heads out of 10 (90%).  The difference between these 

two-sided Fisher exact P-value of 0.003.  Since you used the same 
coin, obviously the difference in the percentage of heads in the 
two series of tosses was not due the design or shape of the coin; it 
was merely due to random variation (chance).  In statistical terms, 

this was type I error, because while there was no difference, you 

For example, if we want a two-sided type I error probability of 
0.05 (5%), its corresponding Z will be 1.96.  For a type I error of 
0.01, Z will be 2.58.  If we want a smaller type I error, then our 
Z, and consequently our sample size would be larger.  In other 
words, if we ask for a smaller probability of error, we need a larger 
sample size, which is in line with Principle 2-3. 

  

Type II error occurs when in truth the two treatments are differ-

happens quite commonly if the sample size is not large enough.  
We obviously want to reduce the probability of such errors, i.e., 
we want to detect differences if they exist.  Reducing type II error 
is also called increasing the power of the study.  If we want larger 
power, or smaller type II error, our Z will increase, which requires 
larger sample size.  Intuitively, the smaller the probability of error, 
the larger our sample size should be (Principle 2-3). 

3-3- Comparing mortality
Let’s discuss the third case.  We want to compare the effects of 

treatments X and Y on reducing mortality.  To do this, we ran-
domize subjects into two treatment groups, receiving X or Y.  The 
required sample size for each group could be obtained from the 
formula below:  

n= d2

(Z1- /2+ Z1- )2 [(

The elements used in this formula are exactly the ones used in 
, 
-
-

ment plays the role of variance when the outcome is dichotomous 
(died or did not die).

  
4- Factors that need to be determined and their impact 

on sample size
A number of formulas were introduced in the previous section 

to calculate the study sample size.  The question is: “What is the 
right formula for our study and what are the right numbers to put 
into it?”  A number of decisions should be made before we choose 
the right formula.  And after the formula is selected, we need to 
decide what numbers to put into the formula.  Such decisions, 
which usually have enormous impacts on our calculated sample 
size, are discussed here. 

  
4-1- Deciding on the main objective of the study
The main objective of the study is the primary factor in selecting 

the formula.   For example, in Section 3, we chose three different 
formulas for studies with three different objectives.   The objec-

objectives may have a substantial impact on sample size.  
Example 8:  The objective of a study is: “To compare the ef-

fects of treatments X and Y on serum cholesterol in a randomized 
parallel design trial.”  As simple as it sounds, the objective still 

sample size.  For example, the required sample size would be dif-
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ferent if we chose to compare the effects of the treatments in a su-
periority trial – i.e., a trial that determines which drug is superior 
– versus if compared them in a noninferiority trial – i.e., our plan 
is to show that the new drug is not inferior to the standard treat-
ment by a certain amount.  Also, it would make a big difference 
if we decide to compare the mean cholesterol reduction versus 
we decide to compare the proportion of people whose cholesterol 

Unfortunately, determination of the main study objective is not 
always straightforward, particularly in observational studies, such 
as case-control and cohort studies.  Consider the example of a 
cohort study. During follow-up in a cohort study, there will be 
a large number of possible outcomes, including overall mortal-
ity, ischemic heart disease mortality, and esophageal cancer inci-
dence.  If the main outcome is a common event, such as overall 
mortality or mortality from ischemic heart disease, the sample 
size doesn’t have to be very large, whereas if the main outcome is 
esophageal cancer incidence, a relatively uncommon cancer, then 
sample size has to be quite large.  Likewise, in a typical cohort 
study, we collect information on a number of exposures, with each 
exposure having its own distribution.  Although protocols often 
require that we determine sample size, it may not always be easy 
to determine in advance what the main outcome and the main ex-
posure is.  The usefulness of a cohort goes way beyond one out-
come and one exposure.  

4-2- Selecting the design of the study
Design of the study may have a major impact on the sample 

size.  For example, it makes a large difference when we com-
pare the effects of treatments X and Y on serum cholesterol in 
a parallel design trial versus a cross-over trial.  Cross-over trials 
often need much smaller sample sizes, as each person receives 
both treatments. Also, each person serves as his or her own con-
trol, eliminating interpersonal variance, which again results in a 
smaller sample size.

   
4-3- Deciding on the proportion of participants distributed into each 

study arm
In the formulas discussed in Sections 3-2 and 3-3, we assumed 

equal sample size in each of the two treatment groups.  However, 
we may decide otherwise.  For example, in comparing treatments 
X (an old treatment) and Y (the new treatment), we may decide to 
randomize more people into receiving Y.  This is because X is a 
well-known and long-used treatment, but Y is a new one and we 
want more information on it, particularly about its side effects.  
Given equal variance in the two study arms, uneven distribution 
of participants in the study arms requires higher sample size to 
obtain the same power.   

Example 9:  We want our study participants to be distributed 
with a ratio of 1 to 3 into X and Y treatment groups, respectively.  
If so, a total sample size of 1333 (333 in X and 1000 in Y) will 
give us the same power as randomizing 1000 people equally to 
each study group (500 X and 500 Y).  Here, we need a 33% in-

4-4- Deciding between Bayesian versus frequentist methods
All of the formulas and much of the discussion made in this pa-

per are based on the frequentist view of probability.  This is be-
cause, at least thus far, much of the currently practiced statistics 
is based on frequentist methods.  For example, P-value, power, 
type I error, and much of all other familiar statistics is rooted in 

frequentist view.  
However, Bayesian methods are gaining popularity.  If Bayesian 

analysis is considered, sample size calculations will be totally dif-
ferent.  Sample size and power calculations for studies designed to 
be analyzed using Bayesian methods heavily depend on the prior 
distributions.  Without going into any details, prior distributions 
may come from various sources, including our beliefs.  For exam-

-
rect, no matter how much data you show him, he will stand by his 
prior opinion.  If so, even a huge sample size showing the contrary 
would do no good!  This one, of course, was an extreme example!  
Using prior distributions could be very helpful in some cases.

  
4-5- Deciding the numbers to put in the formulas
Consider the study presented in Section 3-2.  Assume the litera-

ture suggests that the variance of blood pressure in each group is 
20 mmHg.  If we choose a power of 0.90 and a type I error level 
of 0.01, and we want to detect a d = 2 mmHg, the required sam-
ple size would be nearly 6000.  However, if we choose a power 
of 0.80 and a type I error level of 0.05, and we want to detect a 
d = 3 mmHg, the required sample size would be approximately 
1400.  Therefore, with some minimal changes in requirements, all 
perfectly reasonable and within the ranges used by clinicians and 

1400 or as high as 6000.

5- The impact of assumptions
Several assumptions have been made for doing the calculations 

made in Section 3.  Departures from these assumptions may make 
sample size calculations incorrect.  Below, we provide a few ex-
amples of the assumptions and show their impact on sample size 
calculations.  To make it simple, in all examples we have assumed 
that the calculated sample size under the assumption is 1000.  

5-1- Independence of study samples
The formulas and methods discussed so far assume that indi-

viduals in the sample are independent.   However, if they are not, 
then the sample size must be larger to accommodate for lack of 
independence (sometimes referred to as clustering).  

Example10:  Consider the extreme example that identical twins 
always respond identically to a drug; i.e., the correlation between 
response from identical twins is 1.00.  If so, when a researcher re-
cruits 500 pairs of identical twins, although the sample size is 1000, 
it only provides us with information equivalent to 500 people; once 
we know the response from one twin, having the second one adds no 
further information.  Here we say the effective sample size

Example 11: Assume that to reduce costs of enrolling study 
participants, rather than selecting 1000 people randomly from an 
entire population, we randomly select 20 villages from the popu-
lation and then randomly select 50 individuals from each village 
(two-stage cluster sampling).  Since the responses obtained from 
each village can be correlated, the effective sample size may be 
less than 1000.  If so, the effective sample will fall somewhere be-
tween the number of independent units (here, number of villages 
= 20) and the total number of study participants (here, 1000).  In 
other words, our sample selection is not quite as good as recruiting 
1000 independent people, but it is not as poor as selecting only 

to say that the effective sample size depends on the total number 
of people, the number of units, and the intracluster correlation, 
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i.e., the correlation between responses from individuals in each 
village.  In this example, if the intracluster correlation is 0.10, the 
effective sample size approximately 170, which is indeed between 

5-2- No attrition
The formulas shown in Sections 3 assumed no sample attri-

tion.  If we assume an attrition of 20%, then the initial sample size 

of 1000. However, it may be impossible to determine the extent of 
sample attrition prior to conducting the study.  

The formulas in Section 3 assumed that the target population 

size may be slightly lower.  
Example 12: If the target population is only 20,000 people, to deter-

As illustrated by these numbers (975 versus 1000), as long as the 
sample is relatively small compared to the target population (e.g., 
less than 5% of the entire population), the difference in sample 

size of the target population is usually not considered in sample 
size calculations.

5-4- No adjustment for baseline characteristics
The formulas in Section 3 did not consider adjusting for base-

line characteristics.  Multiple regression methods that adjust for 
baseline characteristics usually result in reduced variance, thus we 
obtain more power than we actually planned.  

Example 13:  Assume that the outcome of a study is depression 
after six months of treatment with X or Y.  If we measure depres-
sion at study baseline, and baseline depression is highly correlated 

the study more powerful.  If the correlation between baseline and 
-

count, then a sample size of 1000 will actually give us a power 

Note that a correlation of 0.50 is very high.  With a correlation of 
0.10, information from 1000 people provides with a power equal 
to having 1010 people.  Most correlations are around this size 
(0.10 or so).  Therefore, correlations are often ignored in sample 
size calculations. 

6- Nonstatistical considerations in determining sample 
size

In addition to statistical calculations, there are other issues that 
may matter is choosing our study sample size.  Funding, time, 
number of available patients, ethical issues, similar research being 
done elsewhere, and novelty of the research topic may play a role 
in determination of sample size.  

6-1- Funding
As discussed in the previous sections, we can determine a rea-

sonable range of sample sizes (e.g., from 1400 to 6000) for a 
study.  If a researcher has funding to study only 20 subjects, then 
he perhaps shouldn’t pursue that study.  On the other hand, if he 
has large resources and large number of participants available, 
then he can determine a sample size between 1400 and 6000 for 

his study, depending on how much error he is willing to accept.  

6-2- Ethical issues
Conducting a study with 100,000 people, where at most 6000 is 

needed, may be considered unethical, particularly if the study is a 
randomized trial testing a new drug. 

 
6-3- Fixed number of patients available to the researcher

-
cal researcher may have been able to collect data from 200 cases 
of a rare disease over his 20 years of experience (roughly 10 per 
year).  If the researcher plans to increase sample size to 500, he 
may need to wait another 30 years (perhaps not feasible), or col-
laborate with other centers in the world, which again may or may 

In circumstances like this, sample size formulas can be used, but 
not to determine sample size, rather to learn about the power to 
detect a certain difference.  For example, with 200 cases and 800 

-
posure of 0.20 in controls based on previous research, we will 
have 84% power to detect a difference (reject the null hypothesis) 
if the true probability of exposure among cases is 0.30.  Although 

difference.  
In some ways, determination of sample size is like buying a 

to buy a home and you can afford only $300,000, you may be able 
to buy a home with two bedrooms and a large living room, or a 
home with three bedrooms and a small living room.  Likewise, 

300 patients, that is what you can afford; with that you can get a 

d

6-4- Novelty of the study
Novelty of the topic is important in making a decision to do a study 

However, given that the results were novel and the disease was rare, 
it was worth being published.1  Today, a report of a far larger number 
of such cases may not be interesting enough for publication. 

 
6-5- Similar studies being underway
Similar studies being conducted in other places could encourage 

or discourage conducting studies with relatively small sample sizes.  
On the one hand, availability of results from many similar studies 
may take away from novelty of the study.  On the other hand, if mul-
tiple low-powered studies are conducted, then one could potentially 
do a meta-analysis or a combined analysis to increase power.  There-

together, they would greatly contribute to our knowledge.  

7- Methods used to calculate sample size
 Sample size can be calculated using formulas or simulation 

methods.  In the example below, we will calculate the sample size 
using a formula.  

Example 14:  We would like to compare, in a randomized paral-
lel design trial, the effect of treatments X and Y in reducing serum 
cholesterol in a group of hypercholesterolemic patients.  What is 
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the required sample size?
-

eter we are going to compare: the percentage of patients whose 
cholesterol is reduced to target levels after treatment, or the mean 
cholesterol after treatment?  Let’s assume we are going to compare 
means.  If we want equal number of patients randomized to each 
group, the formula for calculating sample size in each group is:

n= d2

(Z1- /2+ Z1- )2
( 2

1 
2
2   )

Now, we need to determine each of the components.  Let’s as-
sume that we accept a type I error of 0.05, for which Z is 1.96; 
and a type II error of 0.20 (power of 0.80), for which the cor-
responding Z is 0.84.  We need to provide an estimated variance 
of cholesterol after treatment.  After some literature review, we 
determine that a standard deviation of 30 mg/dL is a reasonable 
estimate for each of the treatments.  Most importantly, we need to 
determine the minimum mean cholesterol difference between the 
two groups that is clinically useful and meaningful to us.  Let’s 
say a difference of 3 mg/dL is the minimum that we would like to 
be able to detect; below that, if we don’t detect the difference, it 
doesn’t matter, as it is a clinical tie.  Plugging these numbers into 

Since manual calculations may be tedious, software programs 
have been developed to calculate sample size. For example, us-
ing STATA’s sampsi command, we obtain a sample size of 1570 
for each group, or a total of 3140 cases.  The minimal difference 
between manual and software calculations is due to rounding. 

Prior to the wide availability of computers, tables and nomo-
grams were developed and used to calculate sample size.  Again, 
the idea was to reduce the pain of using formulas.  Nomograms 
can be found in books or on the Internet.2  Although they are rela-
tively easy to use, nomograms may not be available for all study 
designs, objectives, or for all levels of type I and type II errors.  
Therefore, they are not as versatile as computers in calculating 
sample size, and their use provides little advantage over other 
methods.  Tables have similar problems.    

Simulation is another approach used to calculate sample size or 
power.  This method is highly versatile – more so than using for-
mulas – and can be used to calculate sample size under nearly all 
circumstances.  It is most useful when there are no commands 
in our statistical package to calculate sample size of our study, 
mostly when the design is complex.  However, simulation usu-
ally requires programming and therefore needs to be done by a 
statistician.  As this method requires computer power, it has be-
come more commonly used with the increased availability of 
faster computers.  The idea is that we generate populations with 
the given parameters over and over (for example normal popu-
lations with means of 200 and 197 for treatments X and Y and 
standard deviations of 30 for each one), do the appropriate test 
(e.g., t-tests), and determine the proportion of the tests that found 

latter proportion gives us the power.  We can change the sample 
size to see which sample size gives us adequate power. 

      
8- Software used to calculate sample size
Sample size can be calculated using almost all commercial sta-

tistical software, such as STATA and SAS.  For example, STATA’s 

sampsi command and SAS’s PROC POWER can do the work for 
a variety of designs.  There is also freely available and relatively 
easy-to-use software designed for sample size calculation.  One 
example is the PS Power and Sample Size Calculation program, 
written by Dupont and Plummer at Vanderbilt University.3  The 
program provides a step-by-step guide to calculate sample size.  
Another example is the Power program, written by Lubin and 
Garcia-Closas at the U.S. National Cancer Institute.4,5  This pro-
gram is particularly useful to calculate sample size when the out-
come of interest is interaction.  Yet another example is Epi Info, 
a free software for statistical analysis and power calculation, de-
veloped by the U.S. Centers for Disease Control and Prevention.

Conclusions

Statistical calculations of sample size depend on a number of 
factors including, but not limited to, the type of the study, the 
parameter that is going to be estimated (e.g., a mean or a pro-
portion), the variance of the variable of interest, the acceptable 
type I and type II errors, clustering of the samples, and correlation 
among variables.  Such calculations are to some extent subjective, 
because it is usually not obvious which numbers we should put 
in the formulas.  The truth is that the number that comes out of 
the formula is only one acceptable number within an acceptable 
range.  In addition, sample size may also depend on a number of 
nonstatistical factors, such as novelty of the study.  As Norman 
and colleagues have put it,6 “Sample size estimates are like the 

an impressive aura of precision, yet privately we (statisticians) 
are acutely aware of their shortcomings and extreme impreci-
sion.”   Having discussed all of these limitations, it is still prudent 
to calculate sample size statistically, as the results provide us with 
a range of reasonable sample sizes, as well as information on the 
power to detect a certain difference.   
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