Insight into the Serum Kisspeptin Levels in Infertile Males

Muhammad Haris Ramzan MBBS MPhil¹, Muhammad Ramzan MBBS PhD², Faiqah Ramzan PhD³, Fazal Wahab PhD⁴, Musharraf Jelani PhD¹, Muhammad Aslam Khan MBBS DCP⁵, Mohsin Shah PhD⁴

Abstract

Background: Regulation of reproduction is now considered to be carried out by the kisspeptin and its receptor, GPR54 or Kiss1r. Mutations of either Kiss1 or Kiss1r in humans and mice result in profound hypogonadotropic hypogonadism. The present study was aimed to determine whether the levels of kisspeptin are associated with male infertility.

Methodology: The study involved 176 male subjects aged 18 – 50 years including 26 fertile and 150 infertile. Infertile subjects were further subdivided according to WHO guidelines of semen analysis into 22 asthenozoospermia, 08 asthenoteratozoospermia, 18 azoospermia, 58 normozoospermia, 06 oligozoospermia, 12 oligoasthenozoospermia and 26 oligoasthenoteratozoospermia. Thorough clinical examinations excluded those suffering from chronic health problems. Serum kisspeptin levels were measured by enzyme immunoassay (EIA) and follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were estimated by chemiluminescence assay (CLIA).

Results: The results of the present study have revealed that kisspeptin levels were significantly lower in all infertile males as compared to the fertile males. Significantly low LH and testosterone levels were observed in all infertile groups as compared to fertile group. FSH levels were significantly lower in normozoospermic and azoospermic as compared to fertile males, while no significant difference was observed between the other infertile and fertile group.

Conclusion: The study revealed that serum kisspeptin levels were observed significantly lower in the infertile as compared to fertile males, indicating that the kisspeptin might be associated with the fertility problems in males.

Keywords: FSH, kisspeptin, LH, male infertility, testosterone

Introduction

Infertility is regarded as a social problem amongst all cultures and societies. It affects about 10% – 15% couples of reproductive age. Male infertility is directly or indirectly responsible for the 60% of cases involving the reproductive-age couples with fertility related issues.¹ The hormone based treatment for infertility work through the manipulation of the hypothalamic–pituitary–gonadal (HPG) axis at the level of gonadotropin releasing hormone (GnRH) or below. The discovery of Kiss1 in 1996 and the successive identification of the kisspeptin receptor (previously known as G-protein-coupled receptor 54, GPR54) added a new dimension to our understanding of the physiology of the HPG axis, reproduction and fertility.²³

The Kiss1 gene encodes a 145 amino acid protein that is cleaved to produce a 54 amino acid peptide called kisspeptin, which possesses a distinct RF-amide motif (Arg-Phe-NH₂) in its C-terminal region. Shorter fragments (e.g. kisspeptin-14, kisspeptin-13, and kisspeptin-10) of kisspeptin-54 which are generated by further cleavage of the prohormone, also bind to GPR54.⁴⁶

Kisspeptin-54 was originally identified as a metastasis sup-

Keywords: FSH, kisspeptin, LH, male infertility, testosterone

Authors’ affiliations: ¹Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan; ²Department of Biochemistry, Peshawar Medical College, Peshawar, Pakistan; ³Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan; ⁴Department of Pathology, Dist-rect Headquarter Teaching Hospital, Dera Ismail Khan, Pakistan.

Corresponding author and reprints: Mohsin Shah PhD, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan. Tel.: +92-342-9620074, Fax: +92-5862519, E-mail: mohsin_gnu@yahoo.com; mohsin.ibms@kmu.edu.pk.

Accepted for publication: 12 November 2014

Serum Kisspeptin Levels in Infertile Males

Archives of Iranian Medicine, Volume 18, Number 1, January 2015
idiopathic central precocious puberty. In addition, it has been shown that the serum kisspeptin levels were significantly higher in girls with the central precocious puberty and with premature thelarche than in age matched prepubertal control. It has also been demonstrated that systemic administration of kisspeptin-54 can acutely increase circulating levels of LH, FSH, and testosterone release in human males.

In the last, however, the serum kisspeptin levels in the girls with central precocious puberty and premature thelarche are available, but data on the kisspeptin levels in infertile and their age matched fertile males are lacking. The present study was aimed to determine whether the levels of kisspeptin are associated with male infertility.

Materials and Methods

The study included 176 male subjects aged 18 – 50 years. Among 176 male subjects 26 were fertile (proven fathers) and 150 were infertile (whose post marital interval was more than one year and had failed to procreate during the last one year of regular unprotected sexual intercourse). Infertile subjects were further subdivided into 22 asthenoospermia, 08 asthenoteratozoospermia, 18 azoospermia, 58 normozoospermia, 06 oligozoospermia, 12 oligoasthenozoospermia and 26 oligoasthenoteratozoospermia. This division of infertile subjects into different groups was based strictly on the semen analysis according to the nomenclature of the WHO Laboratory manual for the Examination and Processing of Human Semen (2010). All the subjects were subjected to thorough clinical examination to exclude those suffering from the chronic health problems (tuberculosis, asthma, liver / renal disease, hypertension, severe obesity and diabetes). Among the 150 subjects with fertility problems; 32 were affected by varicocele, 16 from nonobstructive azoospermia, 10 hypergonadotropic hypo-gonadism, 53 had hypogonadotropic hypogonadism and 39 from idiopathic infertility.

The study was approved by the Institutional Review Board (IRB) and Advanced Studies and Research Board (ASRB), Khyber Medical University, Peshawar, Pakistan. Written informed consent was obtained from the subjects and the participation in the study was voluntary. Fertile and infertile subjects were recruited from the two private clinics in Dera Ismail Khan, Khyber Pakhtunkhwa (KPK), Pakistan. The semen samples were collected by protected sexual intercourse. Infertile subjects were further sub-divided into different subgroups except oligozoospermic as compared to fertile males. Normal sperm forms were observed in all fertile subgroups except oligozoospermic as compared to fertile ones. Normal sperm forms were observed significantly lower in all infertile subgroups except oligozoospermic as compared to fertile ones. Normal sperm forms were observed significantly lower in all infertile groups as compared to fertile group. The results of our study revealed that head and midpiece malformations were observed significantly lower in all infertile subgroups except oligozoospermic as compared to fertile males. Tail defects showed no significant difference between the fertile and all infertile males.

Kisspeptin levels (ng/ml) are presented in the Figure 1. In fertile subjects, kisspeptin levels were observed significantly higher (P < 0.001) [23.32 (11.08 – 36.55)], as compared with infertile normozoospermic [6.37 (1.01 – 11.49)], azoospermic [4.41 (2.69 – 6.82)], asthenozoospermic [5.34 (1.67 – 8.98)], asthenoteratozoospermic [4.41 (2.49 – 5.78)], oligozoospermic [3.43 (1.58 – 4.48)], oligoasthenozoospermic [4.72 (0.98 – 10.16)] and oligoasthenoteratozoospermic [5.04 (1.67 – 13.65)] levels in fertile males as compared to infertile groups.

Table 1. Mean age (years) and BMI (kg/m²) of fertile and their age matched infertile subjects are listed in Table 1. Mean age (years) and BMI (kg/m²) did not differ significantly in fertile and all infertile groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fertile (n=26)</th>
<th>Infertile (n=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>33.23±1.14</td>
<td>34.89±1.582</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.98±0.647</td>
<td>23.36±0.356</td>
</tr>
</tbody>
</table>

Values = Mean ± SEM

Table: Mean age (years) and BMI (kg/m²) of fertile and infertile normozoospermic (NZ), azoospermic (AZO), asthenoteratozoospermic (ATZ), oligozoospermic (OZ), oligoasthenozoospermic (OAZ) and oligoasthenoteratozoospermic (OATZ) males.

Statistical analysis

Results are presented as mean ± SEM. The obtained results were compiled and analyzed by Statistical Package for Social Sciences (SPSS, version 16, Inc, Chicago, Illinois, USA) using one way ANOVA followed by post hoc Tukey’s test. The difference was considered statistically significant at P < 0.05.

Results

Mean age (years) and BMI (kg/m²) of fertile and their age matched infertile subjects are listed in Table 1. Mean age (years) and BMI (kg/m²) did not differ significantly in fertile and all infertile groups.

Sperm motility and sperm morphology of fertile and infertile subjects are shown in Table 2. Sperm motility was observed significantly lower in all infertile subgroups except oligozoospermic as compared to fertile ones. Normal sperm forms were observed significantly lower in all infertile groups as compared to fertile group. The results of our study revealed that head and midpiece malformations were observed significantly lower in all infertile subgroups except oligozoospermic as compared to fertile males. Tail defects showed no significant difference between the fertile and all infertile males.

Kisspeptin levels (ng/ml) are presented in the Figure 1. In fertile subjects, kisspeptin levels were observed significantly higher (P < 0.001) [23.32 (11.08 – 36.55)], as compared with infertile normozoospermic [6.37 (1.01 – 11.49)], azoospermic [4.41 (2.69 – 6.82)], asthenozoospermic [5.34 (1.67 – 8.98)], asthenoteratozoospermic [4.41 (2.49 – 5.78)], oligozoospermic [3.43 (1.58 – 4.48)], oligoasthenozoospermic [4.72 (0.98 – 10.16)] and oligoasthenoteratozoospermic [5.04 (1.67 – 13.65)] levels in fertile males as compared to infertile groups.
thenoteratozoospermic [5.67 (1.41 – 8.77)] males.

Serum follicle stimulating hormone (FSH) levels (mIU/ml) are shown Figure 2. FSH levels were found significantly lowered \((P < 0.001) \) in infertile normozoospermic (NZ) [3.51 (0.09 – 13.20)] and azoospermic [3.22 (0.09 – 20.9)] as compared to fertile males [8.17 (3.40 – 13.90)], while no significant difference \((P > 0.05) \) was observed between the infertile asthenozoospermic [6.68 (2.20 – 13.70)], asthenoteratozoospermic [4.97 (3.90 – 6.0)], oligozoospermic [4.35 (0.40 – 8.80)], oligoasthenozoospermic [5.92 (2.60 – 17.4)] and oligoasthenoteratozoospermic [5.59 (1.20 – 21.6)].
Kisspeptins, a family of neuropeptides encoded by the Kiss1 gene, were identified in 2001 as natural ligands of the previously orphan G protein-coupled receptor, GPR54. They are mainly expressed in discrete neuronal populations of the hypothalamus and have recently been emerged as an essential regulator of GnRH natural ligands of the previously orphaned G protein-coupled receptor, GPR54. They are mainly expressed in discrete neuronal populations of the hypothalamus and have recently been identified as an essential regulator of GnRH (gonadotropin-releasing hormone) neurons and, hence, are potent stimulators of gonadotropin secretion. Initially the known biologic function of the kisspeptin was to suppress the tumor metastasis. Later on it was reported that mutations in the Kiss1 or Kiss1r gene were shown to be the cause of hypogonadotropic hypogonadism both males and females. Infant kisspeptins are now regarded as the key players in the different aspects of the maturational and functioning of the reproductive axis, which include the sexual differentiation of the brain, puberty timing, regulation of secretion of gonadotropins and gonadal hormones, as well as control of fertility.

Several studies were carried out to determine the role of kisspeptin in the regulation of the reproductive axis. However, information regarding the kisspeptin concentration in infertile males was lacking. This is the first study to disclose the deficiency of the serum kisspeptin levels in infertile males; therefore comparison cannot be made with other ones.

We hypothesized that the serum kisspeptin concentrations might be decreased in infertile males as compared to the fertile males. To this end, we designed the study and determined the serum levels of kisspeptin in infertile males; whose post marital interval was more than one year, and their age matched fertile counterparts.

The results of the present study demonstrated that levels of kisspeptin, LH and FSH levels of the fertile (control) males are significantly increased as compared to the sensitivity of FSH release in response to kisspeptin. Further this, kisspeptin also potentially increase the serum testosterone levels in normal males. A number of studies revealed that severe testicular degeneration and desensitization of the HPG axis is caused by the continuous intra-peritoneal kisspeptin administration to prepubertal rats, resulting in decreased testosterone concentration by the testis. This decrease in testosterone concentration is likely to be due to down regulation of LH secretion with kisspeptin treatment. This finding is in agreement with our findings which showed that serum LH and testosterone levels were significantly lower in all infertile groups than fertile group while the FSH is lower significantly in normozoospermic and asthenozoospermic males as compared to normal males. On the other hand, no such change was observed in the serum level of FSH in oligozoospermic males relative to that of the hypothalamus and contributions of the peripheral tissues to the serum kisspeptin levels is insignificant. Therefore, it is assumed that the serum kisspeptin might be coming from the hypothalamus.

Kisspeptin is a powerful stimulator of LH and FSH release, both after intracerebral and systemic administration of the peptide. The sensitivity of LH release to the stimulatory effect of kisspeptin is manifold high as compared to the sensitivity of FSH release in response to kisspeptin. Further to this, kisspeptin also potentially increase the serum testosterone levels in normal males. A number of studies revealed that severe testicular degeneration and desensitization of the HPG axis is caused by the continuous intra-peritoneal kisspeptin administration to prepubertal rats, resulting in decreased testosterone concentration by the testis. This decrease in testosterone concentration is likely to be due to down regulation of LH secretion with kisspeptin treatment. This finding is in agreement with our findings which showed that serum LH and testosterone levels were significantly lower in all infertile groups than fertile group while the FSH is lower significantly in normozoospermic and asthenozoospermic males as compared to normal males. On the other hand, no such change was observed in the serum level of FSH in oligozoospermic males relative to that of the hypothalamus and contributions of the peripheral tissues to the serum kisspeptin levels is insignificant. Therefore, it is assumed that the serum kisspeptin might be coming from the hypothalamus.
depending on the fertility status of the subjects. The study showed that serum kisspeptin levels were significantly lower in the infertile as compared to fertile males therefore; infertility in these subjects might be due to the deficient release of kisspeptin.

As the concentration of kisspeptin is significantly lowered in infertile males than the fertile controls, it might be used as a diagnostic tool for infertility and treatment of infertility disorders. Further studies on Kiss1 gene polymorphisms leading to an increased risk of suppression of kisspeptin are also needed.

Author Contributions

MHR perceived the idea; designed the study, conducted the work and drafted the manuscript. MS supervised the study. MR co-supervised the study. FW helped in study design. FR was instrumental in statistical analysis. MJ edited the manuscript. Semen analysis was carried out by MAK. All the authors have read and approved the manuscript.

Competing Interests

The authors have no conflict of interest of intellectual or financial nature with any individual or institution.

Acknowledgments

Authors are thankful to Mr. Fazal Mehmood and his associates for providing technical assistance in semen analysis. Authors are thankful to Mr. Safi-ur-Rehman, Mr. Imran (IBMS, KMU) and Mr. Aziz and Mr. Nasim Gill (RMI) for providing technical assistance in hormonal analysis.

References

