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Introduction

Human longevity is a rare condition which occurs in approx-
imately one individual per seven million.1,2 This phenotype 
is one of the most complicated traits1 and different genetic, 

epigenetic and environmental factors are involved in it.3 It has 
been suggested that genetic factors have an approximately 20%–
30% contribution to survival up to 85 years of age,1,4 but this con-

1,5–8

In developed countries, it has been shown that the mortality rate 
among elderly is decreasing and also the average lifespan has 
risen, and as a result, the number of old people has increased.9–12 
As in developed countries, within the last 50 years, the percent-
age of individuals over 60 years of age has increased in Iran from 
6.24% to 7.27%.13 Old people often suffer from age-related dis-
eases such as Type 2 diabetes, osteoporosis, and cardiovascular 
diseases which impose an enormous socioeconomic burden not 
only on the aged individuals and their families, but also on the 
society.9 Therefore, the genetic basis of longevity is an important 

-
ence healthy aging and may only show age-related diseases in 
their last few years of life.14

Up to now, it is clear that genetic factors play an important role 
in survival beyond 90 years of age, but the exact correlation be-
tween genetic variants and longevity is still unknown; hence, we 
have studied the different hypotheses that describe the relation-
ship between genetic variants and human longevity in an Iranian 
supercentenarian.

Materials and Methods

The study was approved by the Ethics Committee of the Univer-
sity of Social Welfare and Rehabilitation Sciences, Tehran, Iran, 
and written informed consent was obtained from the case and his 
legal guardian.

Case description
The case was a healthy man who was described as a supercen-

tenarian (>110 years old14 / 110–119 years old8) on the basis of 

exact age). He was an Iranian individual who came from a village 
near Yazd. He had one son and six daughters, and a brother who 
died at the age of 90 but further information about his mother and 
father was not available. A physician examined the case and his 
clinical history is shown in Table 1.
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A peripheral blood sample was obtained and DNA extraction 
was performed by the salting out protocol. The quality and quan-
tity of the DNA were checked with an Eppendorf BioPhotometer.

An Illumina Hiseq 2500 was used for whole exome sequenc-
ing, and an Agilent SureSelect Human Exome Kit (V4) was used 
for exome capture and enrichment. The mean depth of coverage 
for the CCSD exons in the sample was 173x and 95.3% of the 
CCD exons were covered at 20× or more in that sample. We used 
Burrows-Wheeler Aligner15 (http://bio-bwa.sourceforge.net/) 
for aligning reads and the Genome Analysis Toolkit (GATK)16,17 
(https://www.broadinstitute.org/gatk/) for variant calling. Vari-
ant annotation was performed by applying ANNOVAR18 (http://
www.openbioinformatics.org/annovar/) and Variant Effect Pre-
dictor (VEP)19 (http://www.ensembl.org/info/docs/tools/vep/in-
dex.html). Furthermore, for visualization of the variants, we used 
the Integrative Genomics Viewer (IGV) tool20,21 (http://www.
broadinstitute.org/igv/). Tertiary analysis was based on four dif-
ferent hypotheses about the genetic basis of longevity14 which are 
described below:

The metabolic variant hypothesis
This hypothesis suggests that metabolic variants could be in-

volved in longevity. We used the same chart as was gathered by 
Sebastiani, et al. in 201214 that comprises 27 coding single nucle-
otide polymorphism (SNPs) in which the exceptional longevity 
alleles were linked to exceptional longevity. The 27 SNPs are lo-
cated on FOXO3A, SIRT1, SIRT3, SIRT5, SIRT6, IGF1R, HSP70, 
CETP, PON1, MINPP1, and KLOTHO genes.14

The lack of disease-associated variants hypothesis 
This hypothesis suggests that the reduced number or lack of 

disease-associated variants can play a role in the phenotype of 
longevity. It is noticeable that this hypothesis has been rejected 
in several previous studies.8,14,22 In order to test the second hy-
pothesis, we compared our data with the Catalog of Published 
Genome-Wide Association Studies (NHGRI GWAS Catalog) 
11-26-08 (http://www.genome.gov/gwastudies/), which contains 
11,912 SNPs from 1751 publications.23

The rare variants hypothesis
This hypothesis suggests that some novel or rare variants within 

a small number of individuals are important for shaping the phe-
notype of longevity. To test this hypothesis, we gathered candi-
date aging and longevity genes from the Genage24 and Longevity 
map25 databases. These databases provide all candidate aging and 
longevity genes from GWAS studies among different populations. 
We compared the candidate genes with our data and then isolated 
novel variants among the genes. Based on the fact that the Iranian 
population is not included in global population studies such as the 
1000 Genomes Project, we decided to compare the novel variants 
with an in-house exome sequencing database of 285 Iranian indi-
viduals to assess the rarity of the variants among our population.

The enrichment of longevity-associated variants hypothesis
This hypothesis suggests that long-lived individuals show this 

trait because of a high number of longevity-associated variants. 
For evaluation of this hypotheses, we used longevity-associated 
variants from all over the world, which were available in the Lon-
gevity map25

Clinical characteristics Description
Cognitive decline/forgetfulness/declined consciousness Negative
Eye examination: refractory errors/cataract/presbyopia/astigmatism Negative
Skin appearance: pruritus/dryness/eczema/abnormal pigmentation Negative
Teeth Dentures 
Age-related deafness Negative
Speech Normal
Tremor Negative
Motor movements: walking with a cane Yes
Musculoskeletal: pain in joint, muscle, bone/muscular atrophy/knee arthritis Knee arthritis 
Blood pressure Normal 
Genitourinary tract (GUI): Urinary infection/urinary incontinence impotency/ benign prostate 
hyperplasia (BPH) Negative

History of surgery: cataract/prostate/appendix/glaucoma/cardiac/orthopedic Negative
Family history Negative
Nutrition Natural diet 
Medication Negative

Negative
Blood biochemistry test 
FBS                                            95 mg/dL
Blood Urea                              25.0 mg/dL
Creatinine                                  0.9 mg/dL
Uric Acid                                   5.5 mg/dL
Cholesterol                            185.0 mg/dL
Triglycerides                          120.0 mg/dL
HDL                                         50.0 mg/dL
LDL                                          111 mg/dL
S.G.O.T (AST)                               35 IU/I
S.G.P.T (ALT)                               30 IU/I
Alkaline phosphatase                220.0 IU/I

Normal

Table 1. Clinical history of our case.
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Results

In total, we found 22,657 coding variants based on RefSeq da-
tabase Release 63. The results for each hypothesis are as follows:

Among 27 metabolic variants, the subject had the exceptional 
longevity allele in 18 variants, of which 14 variants showed a ho-
mozygous genotype and 4 variants showed a heterozygous geno-
type. The details of the variants are shown in Table 2.

In comparison with NHGRI GWAS Catalog 11-26-08, we found 
58 trait-associated variants for 63 traits and a number of variants 
were associated to more than one trait. Among these variants, 11 
variants were homozygous for the risk allele of the trait and 31 
variants were heterozygous, but for 21 variants, the risk allele 

included in Tables 3, 4, and 5.

We found 17 novel variants within aging candidate genes and 13 
novel variants within longevity candidate genes. It is noticeable 
that four variants are common between these two categories. Vari-
ants within longevity candidate genes and aging candidate genes 
are shown in Tables 6 and 7, respectively. To determine whether 
these variants are rare among the Iranian population, we compared 
them with our in-house database of 285 Iranian individuals. This 

comparison is shown in Table 8. We found out that the variant 
with variant ID 2:227659846 is not rare among our population.

In comparison with all of the previous studies about longevity, 
in our sample, we found just seven longevity-associated variants 

previous GWAS studies. These variants are shown in Table 9.

Discussion

It is believed that variants within different metabolic pathways 
are involved in developing the phenotype of longevity. In 2012, 
Sebastiani, et al. collected 27 coding SNPs from the published 
literature which were previously linked to exceptional longev-
ity.26 Their data on two other supercentenarian cases revealed that 
62.96% and 74.74% of these variants encompassed the excep-
tional longevity allele. Our case had the exceptional longevity al-
lele in 66.66% of these variants; therefore, this study supports the 
metabolic variant hypothesis.

The majority of supercentenarian cases experience healthy ag-
ing and they may not show age-related diseases until their last 
few years of life. This may originate from the reduced number 
or lack of disease-associated variants in their genome. Although 
the second hypothesis has been rejected in several previous stud-

Gene SNP Exceptional longevity allele Genotype of the case (I = 54462)

SIRT1 rs2273773 T TT 
SIRT3 rs28365927 G GG

KLOTHO
 
 
 
 

rs2772364 C CC
rs9527026 G AG
rs564481 C CC
rs648202 C CC
rs649964 C CC

IGF1R rs35812156 C CC
SIRT6 rs352493 T TT
SIRT5 rs3757261 C CC
PON1 rs854560 A AA

FOXO3A
 
 
 
 

rs12206094 T CC
rs2764264 C CC
rs7762395 A GG
rs9400239 T TT
rs479744 T GG

IGF1R
 
 
 

rs2229765 A AA
rs34516635 A GG
 chr15:97068418 A GG
 chr15:97272104 A GG

HSP70 rs2227956 A GG
CETP rs5882 GG AA
PON1 rs662 C CT
MINPP1 rs9664222 C AA
SIRT1 rs3758391 T TT
KLOTHO rs9536314 G GT
 rs9527025 C CG

Table 2. Metabolic variants.14
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References Disease/Trait Region Mapped_gene SNPs Strongest SNP-Risk 
Allele

Genotype 
of the case

27 Activated partial thromboplastin time 1q24.2 F5 rs6028 rs6028-C CC
28 Cardiovascular disease risk factors 6p22.2 SLC17A4 rs11754288 rs11754288-A AA
29 C-reactive protein 1p31.3 LEPR rs1805096 rs1805096-A AA
30 C-reactive protein 6q22.1 GPRC6A rs6901250 rs6901250-A AA
31 Crohn’s disease 1p13.2 PTPN22;LOC101928822 rs2476601 rs2476601-G GG
32 2q13 IL1F10 rs6743376 rs6743376-A AA

33 Lipoprotein-associated phospholipase A2 
activity and mass 6p12.3 PLA2G7 rs1805017 rs1805017-T TT

34 Lipoprotein-associated phospholipase A2 
activity and mass 6p12.3 PLA2G7 rs1805017 rs1805017-T TT

35 Obesity (early onset extreme) 9q22.31 NINJ1 rs2275848 rs2275848-T TT
36 Obesity-related traits 4p12 GABRB1 rs6289 rs6289-G GG
37 Pulmonary function 2q35 TNS1 rs2571445 rs2571445-G GG
38 Type 2 diabetes 4p16.1 WFS1 rs1801214 rs1801214-T TT

Table 3. Twelve variants with a homozygous genotype for the risk allele.

Reference Disease/Trait Region Mapped_gene SNPs Strongest SNP-
Risk Allele

Genotype 
of the 
case

27 Activated partial thromboplastin time 3q27.3 KNG1 rs710446 rs710446-C CT
39 Ankylosing spondylitis 5q15 ERAP1 rs30187 rs30187-T CT
40 Ankylosing spondylitis 5q15 ERAP1 rs27434 rs27434-A AG
41 Bipolar disorder 3p21.1 ITIH1 rs1042779 rs1042779-A AG
42 Blood pressure 3p22.1 ULK4 rs3774372 rs3774372-T CT
43 Butyrylcholinesterase levels 3q26.1 BCHE rs1803274 rs1803274-T CT
28 Cardiovascular disease risk factors 3q26.1 BCHE rs1803274 rs1803274-T CT
28 Cardiovascular disease risk factors 2p23.3 GCKR rs1260326 rs1260326-T CT
44 Cholesterol, total 2p23.3 GCKR rs1260326 rs1260326-T CT
45 Chronic kidney disease 2p23.3 GCKR rs1260326 rs1260326-T CT
30 C-reactive protein 2p23.3 GCKR rs1260326 rs1260326-T CT
31 Crohn’s disease 9q32 TNFSF15 rs3810936 rs3810936-C CT
46 Electrocardiographic conduction measures 3p22.2 SCN10A rs6795970 rs6795970-A AG
47 Electrocardiographic traits 3p22.2 SCN10A rs6795970 rs6795970-A AG
48 Electrocardiographic traits 3p22.2 SCN10A rs6795970 rs6795970-A AG
49 Endometriosis 2p25.1 GREB1 rs13394619 rs13394619-G AG
50 Glycemic traits (pregnancy) 2p23.3 GCKR rs1260326 rs1260326-T CT
44 HDL cholesterol 2q34 CPS1 rs1047891 rs1047891-A AC
51 HDL cholesterol 8p21.3 LPL rs328 rs328-G CG
52 Height 1q21.2 MTMR11 rs11205303 rs11205303-C CT
53 Hematological and biochemical traits 2p23.3 GCKR rs1260326 rs1260326-C CT
54 Hypertriglyceridemia 2p23.3 GCKR rs1260326 rs1260326-T CT
55 Interstitial lung disease 3q26.2 LRRC34 rs6793295 rs6793295-C CT

56 Lipoprotein-associated phospholipase A2 activity 
and mass 2p23.3 GCKR rs1260326 rs1260326-T CT

57 Liver enzyme levels 
(gamma-glutamyl transferase) 2p23.3 GCKR rs1260326 rs1260326-T CT

58 Magnesium levels 1q22 MUC1 rs4072037 rs4072037-C CT
59 Metabolite levels 2q34 ACADL rs2286963 rs2286963-T GT
60 Monocyte count 3p22.1 ACKR2 rs2228468 rs2228468-C AC
36 Obesity-related traits 1q23.1 KIRREL rs6427419 rs6427419-C AC
36 Obesity-related traits 4q35.2 KLKB1 rs3733402 rs3733402-G AG
36 Osteoarthritis 3p21.1 GNL3;PBRM1;SNORD19 rs11177 rs11177-A AG
61 Periodontal microbiota 5q32 FBXO38 rs10043775 rs10043775-T CT
62 Platelet counts 2p23.3 GCKR rs1260326 rs1260326-T CT
63 Primary tooth development (number of teeth) 7q32.1 OPN1SW rs1799922 rs1799922-T GT

63 Primary tooth development 7q32.1 OPN1SW rs1799922 rs1799922-T GT

64 QT interval 1p36.31 RNF207 rs846111 rs846111-C CG
65 QT interval 1p36.31 RNF207 rs846111 rs846111-C CG

Table 4.
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66 Schizophrenia 6p22.1 POM121L2 rs16897515 rs16897515-C AC
67 Serum albumin level 2p23.3 GCKR rs1260326 rs1260326-T CT
67 Serum total protein level 2p23.3 GCKR rs1260326 rs1260326-T CT
68 Systemic lupus erythematosus 6q23.3 TNFAIP3 rs2230926 rs2230926-G GT
44 Triglycerides 2p23.3 GCKR rs1260326 rs1260326-T CT
69 Triglycerides 2p23.3 GCKR rs1260326 rs1260326-T CT
53 Triglycerides 2p23.3 GCKR rs1260326 rs1260326-C CT
70 Triglycerides 2p23.3 GCKR rs1260326 rs1260326-T CT
51 Triglycerides 8p21.3 LPL rs328 rs328-G CG
71 Two-hour glucose challenge 2p23.3 GCKR rs1260326 rs1260326-T CT
72 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
73 Type 2 diabetes 6q13 C6orf57 rs1048886 rs1048886-G AG
74 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
75 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
76 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
77 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
78 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
79 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
80 Type 2 diabetes and other traits 8q24.11 SLC30A8 rs13266634 rs13266634-C CT
81 Upper aerodigestive tract cancers 4q23 ADH1B rs1229984 rs1229984-T CT
81 Upper aerodigestive tract cancers 4q21.23 HELQ rs1494961 rs1494961-C CT
82 Urate levels 2p23.3 GCKR rs1260326 rs1260326-T CT
83 Ventricular conduction 1p13.1 CASQ2 rs4074536 rs4074536-C CT
84 Waist Circumference - Triglycerides (WC-TG) 2p23.3 C2orf16 rs1919128 rs1919128-A AG

Reference Disease/Trait Region Mapped_gene SNPs Strongest SNP-Risk 
Allele

Genotype 
of the case

85 Alcohol consumption 4q23 ADH1B rs1229984 rs1229984-? CT
86 Alcohol dependence 4q23 ADH1B rs1229984 rs1229984-? CT
87 Celiac disease 1p36.32 MMEL1 rs3748816 rs3748816-? AG
88 Chemerin levels 6p21.2 PI16 rs1405069 rs1405069-? AC
89 Cognitive performance 1q41 FAM177B rs6683071 rs6683071-? GG
89 Cognitive performance 2q31.1 GORASP2 rs4668356 rs4668356-? TT
90 Coronary heart disease 2q32.1 TFPI rs7586970 rs7586970-? CT
91 Coronary heart disease 6q25.2 OPRM1 rs675026 rs675026-? AG
92 Height 3q26.31 FNDC3B rs7652177 rs7652177-? GG
93 Hypertriglyceridemia 2p23.3 GCKR rs1260326 rs1260326-? CT
94 Iron status biomarkers 3q22.1 TF rs1799852 rs1799852-? CT
95 Lipid metabolism phenotypes 2p24.1 APOB rs676210 rs676210-? AA
95 Lipid metabolism phenotypes 2p23.3 GCKR rs1260326 rs1260326-? CT
96 Major mood disorders 3p21.1 PBRM1 rs2251219 rs2251219-? CT
97 Metabolite levels 2p23.3 GCKR rs1260326 rs1260326-? CT
98 Metabolite levels 2p23.3 GCKR rs1260326 rs1260326-? CT
99 Myopia (pathological) 4p15.2 DHX15 rs6841898 rs6841898-? CT
100 Panic disorder 3p26.1 GRM7 rs3749380 rs3749380-? CT
101 Protein quantitative trait loci 2q13 IL1F10 rs6761276 rs6761276-? CC
102 Pulmonary function (interaction) 2q35 TNS1 rs2571445 rs2571445-? GG
103 Reasoning 3p22.1 LYZL4 rs2286720 rs2286720-? AG
104 Rheumatoid arthritis 1p36.13 PADI4 rs2240335 rs2240335-? AC
105 Rheumatoid arthritis 1p36.13 PADI4 rs2240335 rs2240335-? AC
106 Stroke 6q21 AIM1 rs783396 rs783396-? AC
107 Triglycerides 8p21.3 LPL rs328 rs328-? CG
108 Type 2 diabetes 8q24.11 SLC30A8 rs13266634 rs13266634-? CT

109 Waist circumference and related 
phenotypes 2p23.3 GCKR rs1260326 rs1260326-? CT

Table 5. Twenty Seven variants within which the risk allele was not recognized.
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Variant ID Reference Alternates Genotype Amino acid 
changes Gene Transcript 

Prediction 
by Mutation 

Taster

1:237024416 C T C_T Splicing MTR NM_000254 Polymorphism

2:31570510 T C C_T p.Ser1052Gly Nonsyn SNV XDH NM_000379 Disease causing

2:227659846 T G G_T p.Pro1203Pro Synonymous IRS1 NM_005544 Polymorphism

4:141481144 C T C_T p.Arg277Gln Nonsyn SNV UCP1 NM_021833 Disease causing

4:155488788 G C C_G p.Lys178Asn Nonsyn SNV FGB NM_001184741 Polymorphism

6:160499237 C T C_T p.Thr1774Met Nonsyn SNV IGF2R NM_000876 Polymorphism

11:102713159 T A A_T Splicing MMP3 NM_002422 Disease causing

13:99116004 C A A_C p.Arg290Ser Nonsyn SNV STK24 NM_003576 Disease causing

15:58830608 T G G_T p.Phe55Leu Nonsyn SNV LIPC NM_000236 Polymorphism

17:28538344 C A A_C p.Gly435Cys Nonsyn SNV SLC6A4 NM_001045 Disease causing

19:4179130 G A A_G p.Asp116Asp Synonymous SIRT6 NM_001193285 Disease causing

19:45860787 G A A_G p.Ser441Leu Nonsyn SNV ERCC2 NM_000400 Disease causing

22:42046844 C A A_C p.His360Asn Nonsyn SNV XRCC6 NM_001469 Disease causing

Table 6. Novel variants in longevity candidate genes (a number of variants are in common with Table 7).

Variant ID Reference Alternates Genotype Amino acid 
changes Gene 1 Transcript 1 Prediction by 

Mutation Taster

2:170145602 A G A_G p.Tyr326His Nonsyn SNV LRP2 NM_004525 Polymorphism

2:217498296 T C C_T p.Leu17Pro Nonsyn SNV IGFBP2 NM_000597 Disease causing

2:227659846 T G G_T p.Pro1203Pro Synonymous IRS1 NM_005544 Polymorphism

4:103517357 A C A_C p.Thr455Pro Nonsyn SNV NFKB1 NM_001165412 Polymorphism

4:103531829 G A A_G p.Thr774Thr Synonymous NFKB1 NM_001165412 Disease causing

4:141481144 C T C_T p.Arg277Gln Nonsyn SNV UCP1 NM_021833 Disease causing

5:137803529 C A A_C p.Thr464Asn Nonsyn SNV EGR1 NM_001964 Disease causing

6:10410466 T G G_T p.Asn50His Nonsyn SNV TFAP2A NM_001032280 Disease causing

6:170871043 G A A_G p.Gln53Gln Synonymous TBP NM_001172085 Disease causing

6:170871079 G A A_G p.Gln65Gln Synonymous TBP NM_001172085 Disease causing

6:170871085 G A A_G p.Gln67Gln Synonymous TBP NM_001172085 Polymorphism

9:32986031 A - -_- Splicing APTX NM_001195249 Disease causing

17:40364119 G T G_T p.Ser521Arg Nonsyn SNV STAT5B NM_012448 Disease causing

19:4179130 G A A_G p.Asp116Asp Synonymous SIRT6 NM_001193285 Disease causing

19:45860787 G A A_G p.Ser441Leu Nonsyn SNV ERCC2 NM_000400 Disease causing

22:42046844 C A A_C p.His360Asn Nonsyn SNV XRCC6 NM_001469 Disease causing

X:70586354 T G G_T Splicing TAF1 NM_004606 Polymorphism

Table 7.  Novel variants in aging candidate genes (a number of variants are in common with Table 6).
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ies,8,14,22 in our study we decided to compare the sample’s data 
with the NHGRI GWAS Catalog to provide a context for further 
investigations. In comparison with the NHGRI GWAS Catalog, 
it was revealed that our case had a homozygous genotype for the 
risk allele for serious medical conditions such as cardiovascular 
diseases, Type 2 diabetes, and a heterozygous genotype of the risk 
allele for conditions such as high blood pressure, cardiovascular 
diseases, and hypertriglyceridemia while he was healthy. Hence, 

-

GWAS, and have a very small effect in general.

Longevity is a rare and complex trait and the third hypothesis 
suggests that some novel or rare variants within a small number of 
individuals are important for shaping this phenotype. We decided 
to check aging and longevity candidate genes from the Genage24 
and Longevity map25 databases and we found 26 novel variants 
within these genes. After investigation among the Iranian popula-
tion, 25 rare variants remained. It is clear that more supercentenar-
ian studies are needed in order to test this hypothesis and similar 
rare variants within these genes may shed light on new longevity 
candidate variants.

The fourth hypothesis suggests that long-lived individuals may 

Variant ID

C
hrom

osom
e

Position

R
eference

A
lternates

G
enotype

A
m

ino acid changes

G
ene 1

Transcript 1

A
ll sam

ples in cohort | how
 

m
any tim

es is observed | in 
hom

ozygote | in heterozygote

2:227659846 2 227659846 T G G_T p.Pro1203Pro Synonymous IRS1 NM_005544 285|55|0|55

6:10410466 6 10410466 T G G_T p.Asn46His Nonsyn SNV TFAP2A NM_001032280 285|1|0|1

2:31570510 2 31570510 T C C_T p.Ser1052Gly Nonsyn SNV XDH NM_000379 285|1|0|1

4:155488788 4 155488788 G C C_G p.Lys178Asn Nonsyn SNV FGB NM_001184741 285|3|0|3

6:160499237 6 160499237 C T C_T p.Thr1774Met Nonsyn SNV IGF2R NM_000876 285|1|0|1

15:58830608 15 58830608 T G G_T p.Phe55Leu Nonsyn SNV LIPC NM_000236 285|1|0|1

Table 8. Comparison of novel longevity and aging variants among an Iranian population.

rs number Gene Association Population Reference

rs1042713 ADRB2 
American 110

Chinese 111

rs1042714 ADRB2 
American 110

Chinese 111

rs4880 SOD2 Danish 112

rs1815739 ACTN3 Spanish 113

rs651922 DCPS American 1

rs1280396 CGNL1 American 112

rs3024239 WRN American 113

rs2229765 IGF1R 

Italian 14

Italian 14

Italian (southern) 14

rs1042522 TP53 
Italian 114

Italian 115

Table 9.
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have a high number of longevity-associated variants. In compari-
son with previous GWAS studies, our case showed only seven of 
these variants. Even though, longevity-associated variants appear 
to play a role in the phenotype of longevity, it does not seem nec-
essary to have a high number of these variants to develop this trait. 
The rs1042713 in ADRB2 -
ant in two different studies among American and Chinese popula-
tions, but our case showed this variant. The rs2229765 in IGF1R, 
which was studied among the Italian population in three differ-

seems that sequencing the genome of more supercentenarians can 
strengthen the accuracy of future GWAS.

This study supports the metabolic variant hypothesis and has a 
clue for rare variant hypothesis but it suggests that it is not neces-
sary to have a high number of longevity associated variants for the 
phenotype of longevity.

Despite an increase in the number of old people in Iran, we did 
-

fore, we recommend further investigation to provide more genetic 
information on the elderly society in Iran.

The advent of whole exome sequencing has opened a new in-
sight to discover more about the secrets of healthy living and also 
longevity but we should acknowledge that this method cannot 
capture intronic variants and epigenetic alteration that play an im-
portant role in the process of longevity. Our study was performed 
on only one sample and the results cannot be interpreted as a gen-
eralized principle for other elderly societies. However, this is the 

-
gevity. These studies can increase our knowledge on the basic bio-
logical pathways interfering with life and extend our capability to 
gain a better understanding of life and age-related diseases.
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