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Introduction

R apid progress in high-throughput (HT) biotechnologies da-
tasets have led to the development of vast databases and 
their data-mining tools in recent years.1 In fact, these large 

biological data are often overwhelming and challenging as they 
contain much more information than an investigator has generated. 
Therefore, advanced computational and statistical tools are re-
quired for big data analysis.2 Large-scale studies have shown that a 
discrete biological function can rarely be attributed to an individu-
al molecule. Indeed, complex interactions among numerous cellu-
lar constituents such as proteins, DNA, RNA, and small molecules 
manifest many biological characteristics.3,4 One major piece of in-
formation pertains to proteins.  Most of drugs act on proteins, as 
they can tie to pathogenesis of a disease by regular dysfunctions 
such as protein aggregation in Alzheimer and Parkinson diseases 

(AD and PD).5,6 Consequently, increasingly proteins themselves 
are the main targets in medical studies.7 Gene ontology as a part of 

Open Biomedical Ontologies, is 
-

tation.  YPERLINK \o “, “HYPERLINK \o “, “ It seeks to supply 
information based on three notable features of protein molecules: 
cellular component (CC), biological process (BP), and molecular 
function (MF).8 Clustering is the method to analysis different sets 

-
ning the complexity. In fact, data objects are grouped into clusters 
where objects in the same cluster show stronger similarity than in 
other sets.9,10 Clustering methods are usually categorized to hierar-
chical and nonhierarchical clustering techniques.11 These methods 
have a wide range of clustering approaches. In addition, each pro-

complex.12

the same functional category.13,14 The interaction between two or 
more proteins can result in distinct functional objectives that can be 
demonstrated in numerous different ways.15,16 Therefore, for better 
deciphering the functional association of the disease proteome, 
protein map analysis is crucial to establish high sensitive algo-
rithms to evaluate these high-throughput data.2 In this study, two 
common neurodegenerative diseases are chosen for further bio-
logical evaluation. One is Alzheimer’s disease (AD) as the most 
frequent type of progressive dementia in the world. Its onset is 
normally in the elderly population.17 The symptoms consist of de-
cline in memory, thinking and reasoning skills.18 Another wide-
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spread neurodegenerative disease ranking second after AD, is Par-
kinson’s disease (PD).19

gender preference and unknown etiology.20 Clinical symptoms re-
lated to this disease are resting tremors of extremities, muscular 

21 In the 
present work, the possible relationship between AD and PD dis-
eases is studied via cluster analysis. This can lead to a better under-
standing of the molecular basis of the two diseases. In addition, by 
identifying common proteins, it is possible to introduce common 
drug targets for AD and PD diseases. 

Materials and Methods

Proteins and their related pathways to Alzheimer’s disease and 

analyzed based on different aspects such as structural, sequential, 
and gene ontology.14 Raw data was acquired from the KEGG da-
tabase and the protein map of the two diseases was compared. 
KEGG is a useful up-to-date database for deciphering various 
proteins information. These include map and other studies such as 
systematic analysis of gene functions, linking genomic informa-
tion with higher order functional information. It is also provides 
protein and nucleotide sequence of each genes.22 Common pro-
teins were selected and then their human UniProt codes were re-
trieved for further analysis. Using a scoring system and the Gene 
Ontology database, these common proteins were examined for 
their ontology features. The Uniprot codes were applied for GO 
search. GO is the reference of controlled vocabulary of the terms 
of three biological annotations including cellular component, mo-
lecular function, and biological process.23 Furthermore, the rel-
evant information was downloaded from the database, and simi-
larity between proteins was studied by SimUl graphical similarity 
comparison method.24 The number of common nodes divided by 
the number of nodes in the combination of the two graphs are 
equalized by simUl, hence the similarity was calculated between 
0 and 1.25 The obtained scores were used to provide distance dis-
similarity. Dissimilarity = 1-similarity as a dissimilarity matrix.26 
On the other hand, protein sequences were extracted from KEGG 
databases in FASTA format. Then, global alignment for sequence 
comparison was carried out using Needleman-Wunsch algorithm, 
available in EBI Database. This algorithm is a useful method for 
analyzing similarities between protein sequences.27 Here, this al-
gorithm is applied for pair-wise alignment between each set of 
two proteins. Similarity scores were obtained by comparing each 
of these 23 proteins and the relevant dissimilarity matrix was 
constructed. The constructed matrices were used for clustering 
analysis. Clustering can be useful for a thorough understanding of 
the annotation of protein molecules and their relationship to many 
diseases.28 For clustering studies, resemblance is the key feature.14 
Here, agglomerative hierarchical clustering analysis (bottom up) 

by many studies.11 Interpretation and graphical illustrations of 
clusters of data were performed with the R software.  [R software 
is a free statistical software available on (www.r-project.org)]. It 
offers various packages, one of which is the package cluster used 
to identify subgraphs with maximal density. As mentioned before, 
hierarchical algorithms were the applied clustering methods using 
AGNES function. In order to perform AGNES, the dissimilarity 
matrix is needed. Dendrogram and silhouette plots are the graphi-
cal representations of the clustering in this study. The data was an-

alyzed by correlation distance mode. The distance between each 
cluster can be calculated as follows: D = 1-C, where D = distance 
and C = correlation between spot clusters. Average linkage (UP-

as the average distance.11 In AGNES method, dendrogram repre-
sentation can be helpful to realize the hierarchical order of pro-
tein clusters. In fact, it is useful for retrieving information related 
to identifying which individual divisions are the most similar to 
each other by reading from bottom-up order. Based on agglom-
erative method, another graphical representation is the so-called 
‘silhouette’ that illustrates a concise graphical representation of 
how well each object related to its cluster. This type of graphical 

Peter J. Rousseeuw in 1986 to show 
which objects lie well within their cluster, and which ones are 
simply someplace in between clusters.29 In addition, the strength 
and quality of clustering structures of the dataset were measured 

-
ing range is between 0 and 1. The AC close to 1 implies well-
structured cluster, while AC close to 0 indicates not a powerful 
clustering structure.11 Furthermore, the annotation terms based on 
(GO) features was obtained using DAVID bioinformatics resourc-
es (http://david.abcc.ncifcrf.gov.). Annotation cluster analysis by 
DAVID program can be helpful in retrieving related information 
based on different annotation aspects such as (GO) function cat-
egory.30 For each protein, Uniprot Accession Number was used as 

Count number indicates the number of annotated proteins for each 
mentioned term in DAVID output. Each cluster implies group of 
terms possessing similar biological meaning.31 

Cytoscape v:3.2.1 also was used for the illustration of predicted 
interactions of the common proteins. This tool is an open source 
that provides a resourceful environment for data visualization in 
the form of complex networks available on (www.cytoscape.org).32

Results

The KEGG database is the source for basic examination in this 
study.  The raw data was extracted from this database. Each pro-
tein related to Alzheimer’s disease and Parkinson’s disease was 

Twenty-three proteins were found as ascommon proteins between 
these two diseases (Table 1).

To realize how gene products behave in cellular context, the ap-
plication of GO database is helpful. Gene annotation of 23 pro-
teins were extracted from this database and compared via SimUl 
scoring methods. Therefore, the distance between pairs of proteins 
was calculated as similarity graph based on Gene Ontology terms. 
These measured distances were then applied for protein cluster-
ing as annotation similarity relation. As mentioned before, in this 
method, common nodes of two GO graphs divided by summa-
tion of nodes of two graphs is the similarity numbers, which is 
between 0 and 1. The associated dissimilarity is 1 – similarity.  
Therefore, the lower the scores, the better for sharing within the 
same cluster (See supplementary Tables 1, 2, and 3).

The degree of sequence similarity between proteins is presented 
as a constructed dissimilarity matrix. Numbers are between 0 and 
1 (See supplementary Table 4).

In this study, clustering method was performed based on gene 
ontology graphs and sequence comparison.  Dendrogram cluster-
ing plot of biological process features are presented in Figure 1. 
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Protein  Name Row
Casp3: Caspase 3, apoptosis-related cysteine peptidase1
Casp9 :Caspase 9, apoptosis-related cysteine peptidase2
Cox7c:  Cytochrome c oxidase subunit VIIc3
Cox1:Cytochrome c oxidase subunit I4
Cox8A : Cytochrome c oxidase subunit 8A (ubiquitous)5
COX7A1:  Cytochrome c oxidase subunit VIIa polypeptide 16
COX6B1: Cytochrome c oxidase subunit Vib polypeptide 17
COX6A1:  Cytochrome c oxidase subunit VIa polypeptide 18
SDHA : 9
ATP8 :ATP synthase protein 810
CYCS : Cytochrome c11
APAF1 : Apoptotic protease-activating factor 112
ATP5H : ATP synthase subunit d, mitochondrial13
CYC1 : Cytochrome c1, heme protein, mitochondrial14

 : Cytochrome b-c1 complex subunit 1015
ATP5C1 : ATP synthase subunit gamma, mitochondrial16
ATP5F1 :  ATP synthase lipid-binding protein, mitochondrial17
ATP5G1 : ATP synthase lipid-binding protein, mitochondrial18
ATP5J : ATP synthase-coupling factor 6, mitochondrial19
ATP5G2 : ATP synthase lipid-binding protein, mitochondrial20
CYTB : Cytochrome b21
ATP5A1:  ATP synthase subunit alpha, mitochondrial22
ATP6:  ATP synthase F0 subunit 623

Table 1.

Table 2. 

Table 3.
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Figure 1. Dendrogram clustering plot based on biological process, the ag-

that C is correlation and without unit.

Figure 3. Dendrogram clustering plot molecular function the agglomera-

without unit

Figure 5. Dendrogram clustering plot presentation of cell component, the 

correlation and without unit.

Figure 4. 

Figure 6.   Silhouette plot presentation of cell compartment, the agglome-

Figure 2. Silhouette plot based on biological process, the agglomerative 

Table 4. 
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Figure 8.  Protein-protein interaction network analysis of 23 proteins using Cytoscape v.3.2.1 software derived from Mentha, Reactome-Fls public da-
tabases. This PPI network consists of 600 nodes and 1469 edges. The designate proteins are shown as highlighted nodes. The important hub proteins 

Figure 7. Dendrogram clustering plot of global pair-wise alignment between each pair sets of investigated proteins of the diseases. 
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Based on the results from hierarchical agglomerative clustering, 

most common.  In fact, this type of hierarchical clustering starts 
from small clusters composed by single objects to greater ones, in 
such a way that, the height implies on distance relation between 
clusters. Moreover, the height of a node refers to the distance be-
tween sub-branch clusters. The strength of clustering agglomera-

Silhouette  plot is useful for clustering data illustration. It is pre-

is 0.74 and indicates good clustering structure (See Figure 2).
Above clustering method is also performed for (MF) and (CC) 

with good clustering structure (AC= 0.74, AC= 0.76, respective-
ly)   (See Figures 3 – 6)

Protein alignment shows novel data that can increase related 
annotations. Similarity is the main concept for sequence evalu-
ation. Pair-wise sequence alignment was performed among pairs 

0.74 and indicates good clustering structure. As the agglomerative 
-

ity clustered dataset in this study. In other words, the clustering al-
gorithm is valid for this study.  This can be seen from dendrogram. 

-
notation category of interest, the smaller the P value, the more 

is clear, mitochondria and their main functions and processes are 
highly related to the studied common genes. 

In Figure 8, the interactions of 23 proteins with their neighbors 
are presented. The integrated network was obtained from Mentha, 

in Cytoscape software. Furthermore, topological parameter analy-
sis (degree centrality) of the network by the use of Network Ana-
lyzer, presents the important key proteins in the network. 

Discussion

In large-scale approaches, there is an exclusive requirement for 
analyzing vast amount of data.6   Clustering is one of the useful 
methods for this purpose.  Proteins play a fundamental role in dif-
ferent diseases. As several functions are linked to proteins,6 bio-

that most of the neurodegenerative diseases have malfunction in 
mitochondria compartment, as a key role in regulation of energy 
production of a cell.7 For this reason, further evaluation is needed 
for deciphering Gene Ontology of these diseases.  It is proven that 
energy production pathway has fundamental functions as the key 
molecular process in the cell and acts as a strong link between Al-
zheimer’s disease and Parkinson’s disease.33 Cluster analysis, as 
an appropriate statistical procedure, can classify proteins based 
on distinct similarities.34 Here related proteins are subdivided in 

in Alzheimer’s disease and Parkinson’s disease pathways were an-
alyzed. As shown in Table 1, a number of 23 proteins were detect-
ed as common molecules of these two diseases based on protein 

to identify common pathways and ontology properties. It seems 

for the management of these two diseases. Examining each protein 
one by one can be a taught assignment, while by application of ag-

glomerative clustering analysis of the whole protein, considerable 
results may be achieved. Considering Figures 1 to 4 based on (MF) 
and (BP), clustering results are similar, but in comparison with 

numbers 1, 2, 12 including Casp3, Casp9, and APAF1 and protein 

the distinct clusters in all the GO analysis. In addition, as shown in 
Figures 7 and 8 sequence comparison and PPI network analysis of 

similar functions demonstrate similar sequence similarities, as they 
-

volved in the apoptosis pathway, whereas the second group proteins 
(3, 4, 5, 6) pertain to the mitochondria oxidation pathway (electron 
transport chain). It has been reported that mitochondria function 
and apoptosis are involved in dementia diseases.35 As the function 
of mitochondria is associated with energy production, it can play a 

vast abnormal phenotypes. Therefore, in this clustering algorithm, 
the individual genes are correctly corresponded to their particular 
features including BP, CC, and MF. By considering these valid 

clusters.18 It can be concluded that, clustering methods can provide 
novel description about molecular aspects of diseases. Furthermore, 

main malfunctioning organelle with the highlighted role of oxida-
tive processes in these two diseases. On the other hand, PPI network 
analysis provided a presentation of interactions between these com-
mon proteins.4
that are involved with these known proteins. It is possible to analyze 

-
able candidates for drug targeting and treatment purposes.  In PPI 
network, Casp3,Casp9, and APAF1 are in close relationship and are 

Cox8A, Cox7A1 proteins are also in direct connection, but with 
-

types, AD and PD diseases can have a common molecular basis. If 
proven, it can be concluded that neurodegenerative diseases have a 

-
cess can trigger the onset of different types of these diseases. 

In conclusion, it was clear that the clustering methods reveal 
novel annotation patterns within the dataset that would not have 

-
lationships with these diseases suggest examining them as two 
highly-related diseases for diagnosis and therapeutic purposes. 
Therefore, by applying comprehensive statistical analysis, it is 
hoped that clinical approaches can be feasible. In addition to this, 
these proteins can be assigned as potential biomarkers in drug 
targeting and other clinical approaches. It is also suggested that 
other neurodegenerative diseases with similar neuropathological 
features should be evaluated to elicit possible common molecular 
origin. This theory may not be proven, so before whole analysis, 
studying pairs of diseases can be helpful. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0.00 0.88 0.98 0.96 0.97 0.97 0.98 0.97 0.94 0.95 0.82 0.77 0.95 0.97 0.96 0.95 0.95 0.95 0.95 0.95 0.90 0.90 0.93

2 0.88 0.00 0.91 0.94 0.91 0.91 0.94 0.91 0.93 0.95 0.46 0.64 0.95 0.92 0.94 0.95 0.95 0.94 0.95 0.94 0.97 0.93 0.95

3 0.98 0.91 0.00 0.80 0.20 0.20 0.60 0.20 0.88 0.92 0.92 0.96 0.92 0.60 0.80 0.92 0.92 0.91 0.92 0.91 0.94 0.95 0.92

4 0.96 0.94 0.80 0.00 0.76 0.76 0.85 0.76 0.66 0.80 0.81 0.96 0.80 0.52 0.13 0.80 0.80 0.78 0.82 0.78 0.75 0.87 0.81

5 0.97 0.91 0.20 0.76 0.00 0.01 0.66 0.01 0.85 0.90 0.91 0.95 0.90 0.50 0.75 0.90 0.90 0.89 0.90 0.89 0.93 0.94 0.91

6 0.97 0.91 0.20 0.76 0.01 0.00 0.66 0.01 0.85 0.90 0.91 0.95 0.90 0.50 0.75 0.90 0.90 0.89 0.90 0.89 0.93 0.94 0.91

7 0.98 0.94 0.60 0.85 0.66 0.66 0.00 0.66 0.91 0.96 0.94 0.97 0.96 0.70 0.85 0.96 0.96 0.95 0.96 0.95 0.96 0.97 0.96

8 0.97 0.91 0.20 0.76 0.01 0.01 0.66 0.00 0.85 0.90 0.91 0.95 0.90 0.50 0.75 0.90 0.90 0.89 0.90 0.89 0.93 0.94 0.91

9 0.94 0.93 0.88 0.66 0.85 0.85 0.91 0.85 0.00 0.89 0.82 0.89 0.89 0.71 0.69 0.89 0.89 0.89 0.91 0.89 0.80 0.89 0.90

10 0.95 0.95 0.92 0.80 0.90 0.90 0.96 0.90 0.89 0.00 0.88 0.94 0.01 0.85 0.80 0.01 0.01 0.09 0.07 0.09 0.84 0.45 0.10

11 0.82 0.46 0.92 0.81 0.91 0.91 0.94 0.91 0.82 0.88 0.00 0.48 0.88 0.82 0.81 0.88 0.88 0.88 0.89 0.88 0.90 0.88 0.89

12 0.77 0.64 0.96 0.96 0.95 0.95 0.97 0.95 0.89 0.94 0.48 0.00 0.94 0.95 0.96 0.94 0.94 0.94 0.94 0.94 0.91 0.90 0.93

13 0.95 0.95 0.92 0.80 0.90 0.90 0.96 0.90 0.89 0.01 0.88 0.94 0.00 0.85 0.80 0.01 0.01 0.09 0.07 0.09 0.84 0.45 0.10

14 0.97 0.92 0.60 0.52 0.50 0.50 0.70 0.50 0.71 0.85 0.82 0.95 0.85 0.00 0.50 0.84 0.84 0.83 0.87 0.83 0.86 0.91 0.86

15 0.96 0.94 0.80 0.13 0.75 0.75 0.85 0.75 0.69 0.80 0.81 0.96 0.80 0.50 0.00 0.79 0.79 0.78 0.81 0.78 0.73 0.87 0.81

16 0.95 0.95 0.92 0.80 0.90 0.90 0.96 0.90 0.89 0.01 0.88 0.94 0.01 0.84 0.79 0.00 0.01 0.11 0.09 0.11 0.84 0.46 0.08

17 0.95 0.95 0.92 0.80 0.90 0.90 0.96 0.90 0.89 0.01 0.88 0.94 0.01 0.84 0.79 0.01 0.00 0.11 0.09 0.11 0.84 0.46 0.08

18 0.95 0.94 0.91 0.78 0.89 0.89 0.95 0.89 0.89 0.96 0.88 0.94 0.09 0.83 0.78 0.11 0.11 0.00 0.16 0.01 0.83 0.51 0.19

19 0.95 0.95 0.92 0.82 0.90 0.90 0.96 0.90 0.91 0.07 0.89 0.94 0.07 0.87 0.81 0.09 0.09 0.16 0.00 0.16 0.86 0.48 0.16

20 0.95 0.94 0.91 0.78 0.89 0.89 0.95 0.89 0.89 0.09 0.88 0.94 0.09 0.83 0.78 0.11 0.11 0.01 0.16 0.00 0.83 0.51 0.19

21 0.90 0.97 0.94 0.75 0.93 0.93 0.96 0.93 0.80 0.84 0.90 0.91 0.84 0.86 0.73 0.84 0.84 0.83 0.86 0.83 0.00 0.87 0.80

22 0.90 0.93 0.95 0.87 0.94 0.94 0.97 0.94 0.89 0.45 0.88 0.90 0.45 0.91 0.87 0.46 0.46 0.51 0.48 0.51 0.87 0.00 0.49

23 0.93 0.95 0.92 0.81 0.91 0.91 0.96 0.91 0.90 0.10 0.89 0.93 0.10 0.86 0.81 0.08 0.08 0.19 0.16 0.19 0.80 0.49 0.00

Supplementary Table 1. Constructed matrix of dissimilarity between 23 proteins of table 1 based on biological process (gene ontology). The range 
is between 0 and 1.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0.00 0.45 0.93 0.93 0.96 0.94 0.93 0.93 0.87 0.90 0.84 0.88 0.90 0.92 0.93 0.93 0.84 0.93 0.90 0.90 0.90 0.89 0.91

2 0.45 0.00 0.93 0.92 0.96 0.92 0.92 0.92 0.84 0.88 0.80 0.80 0.88 0.90 0.92 0.91 0.80 0.90 0.88 0.88 0.88 0.87 0.90

3 0.93 0.93 0.00 0.01 0.06 0.05 0.01 0.11 0.90 0.50 0.93 0.97 0.50 0.96 0.40 0.66 0.54 0.44 0.50 0.50 0.50 0.57 0.76

4 0.93 0.92 0.01 0.00 0.06 0.05 0.01 0.11 0.90 0.50 0.93 0.97 0.50 0.96 0.40 0.66 0.54 0.44 0.50 0.50 0.50 0.57 0.76

5 0.96 0.96 0.06 0.06 0.00 0.11 0.06 0.17 0.93 0.54 0.96 0.96 0.54 0.95 0.45 0.69 0.58 0.41 0.54 0.54 0.54 0.60 0.78

6 0.94 0.92 0.05 0.05 0.11 0.00 0.05 0.16 0.87 0.52 0.90 0.97 0.52 0.92 0.35 0.67 0.56 0.47 0.52 0.52 0.52 0.53 0.77

7 0.93 0.92 0.01 0.01 0.06 0.05 0.00 0.11 0.90 0.50 0.93 0.97 0.50 0.96 0.40 0.66 0.54 0.44 0.50 0.50 0.50 0.57 0.76

8 0.93 0.92 0.11 0.11 0.17 0.16 0.11 0.00 0.90 0.50 0.93 0.97 0.50 0.96 0.40 0.66 0.54 0.44 0.50 0.50 0.50 0.57 0.76

9 0.87 0.84 0.90 0.90 0.93 0.87 0.90 0.90 0.00 0.93 0.84 0.72 0.93 0.88 0.86 0.95 0.87 0.92 0.93 0.93 0.93 0.83 0.84

10 0.90 0.88 0.50 0.50 0.54 0.52 0.50 0.50 0.93 0.00 0.90 0.97 0.00 0.96 0.50 0.39 0.10 0.47 0.01 0.01 0.01 0.63 0.58

11 0.84 0.80 0.93 0.93 0.96 0.90 0.93 0.93 0.84 0.90 0.00 0.91 0.90 0.47 0.90 0.93 0.84 0.93 0.90 0.90 0.90 0.69 0.91

12 0.88 0.80 0.97 0.97 0.96 0.97 0.97 0.97 0.72 0.97 0.91 0.00 0.97 0.92 0.97 0.97 0.91 0.93 0.97 0.97 0.97 0.92 0.78

13 0.90 0.88 0.50 0.50 0.54 0.52 0.50 0.50 0.93 0.00 0.90 0.97 0.00 0.96 0.50 0.39 0.10 0.47 0.01 0.01 0.01 0.63 0.58

14 0.92 0.90 0.96 0.96 0.95 0.92 0.96 0.96 0.88 0.96 0.47 0.92 0.96 0.00 0.91 0.97 0.92 0.90 0.96 0.96 0.96 0.74 0.96

15 0.93 0.92 0.40 0.40 0.45 0.35 0.40 0.40 0.86 0.50 0.90 0.97 0.50 0.91 0.00 0.66 0.54 0.44 0.50 0.50 0.50 0.33 0.76

16 0.93 0.91 0.66 0.66 0.69 0.67 0.66 0.66 0.95 0.39 0.93 0.97 0.39 0.97 0.66 0.00 0.43 0.66 0.39 0.39 0.39 0.73 0.38

17 0.84 0.80 0.54 0.54 0.58 0.56 0.54 0.54 0.87 0.10 0.84 0.91 0.10 0.92 0.54 0.43 0.00 0.45 0.10 0.10 0.10 0.56 0.54

18 0.93 0.90 0.44 0.44 0.41 0.47 0.44 0.44 0.92 0.47 0.93 0.93 0.47 0.90 0.44 0.66 0.45 0.00 0.47 0.47 0.47 0.56 0.75

19 0.90 0.88 0.50 0.50 0.54 0.52 0.50 0.50 0.93 0.01 0.90 0.97 0.01 0.96 0.50 0.39 0.10 0.47 0.00 0.01 0.01 0.63 0.58

20 0.90 0.88 0.50 0.50 0.54 0.52 0.50 0.50 0.93 0.01 0.90 0.97 0.01 0.96 0.50 0.39 0.10 0.47 0.01 0.00 0.01 0.63 0.58

21 0.90 0.88 0.50 0.50 0.54 0.52 0.50 0.50 0.93 0.01 0.90 0.97 0.01 0.96 0.50 0.39 0.10 0.47 0.01 0.01 0.00 0.63 0.58

22 0.89 0.87 0.57 0.57 0.60 0.53 0.57 0.57 0.83 0.63 0.69 0.92 0.63 0.74 0.33 0.73 0.56 0.56 0.63 0.63 0.63 0.00 0.75

23 0.91 0.90 0.76 0.76 0.78 0.77 0.76 0.76 0.84 0.58 0.91 0.78 0.58 0.96 0.76 0.38 0.54 0.75 0.58 0.58 0.58 0.75 0.00

Supplementary Table 2. Constructed distance matrix based on dissimilarity of molecular function (gene ontology) of 23 proteins. The range is 
between 0 and 1. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 1 0.33 0.07 0.01 0.1 0.05 0.1 0.01 0.05 0.03 0.15 0.08 0.26 0.28 0.02 0.28 0.11 0.01 0.16 0 0.18 0.09 0.01

2 0.33 1 0.03 0.03 0.07 0.08 0.05 0.08 0.2 0.06 0.07 0.09 0.07 0.24 0.06 0.04 0.05 0.12 0.01 0.11 0.07 0.22 0.01

3 0.07 0.03 1 0.05 0.37 0.22 0.12 0.26 0.04 0.17 0.15 0.01 0.02 0 0.09 0.09 0 0.12 0.2 0.07 0.05 0.06 0.09

4 0.01 0.03 0.05 1 0.04 0.05 0.05 0.1 0.01 0.06 0.03 0.04 0.03 0.17 0.06 0 0.17 0.06 0.08 0.06 0.26 0.14 0.16

5 0.1 0.07 0.37 0.04 1 0.37 0.04 0.04 0.04 0.2 0.03 0.02 0.1 0.05 0.07 0.03 0.12 0.1 0 0.15 0.09 0.05 0.09

6 0.05 0.08 0.22 0.05 0.37 1 0.28 0.03 0.05 0.01 0.16 0.02 0.05 0.06 0.13 0.11 0.13 0.22 0.2 0.17 0.08 0.06 0.05

7 0.1 0.05 0.12 0.05 0.04 0.28 1 0.05 0.05 0.1 0.01 0.02 0.06 0.09 0.14 0.08 0.11 0.02 0.03 0 0.01 0.02 0.01

8 0.01 0.08 0.26 0.1 0.04 0.03 0.05 1 0.07 0.26 0.24 0.04 0.17 139 0.2 0.14 0.08 0.12 0.2 0.11 0.13 0.05 0.08

9 0.05 0.2 0.04 0.01 0.04 0.05 0.05 0.07 1 0.05 0.07 0.13 0.07 0.16 0.02 0.17 0.15 0.07 0.06 0.07 0.01 0.25 0.01

10 0.03 0.06 0.17 0.06 0.02 0.01 0.1 0.26 0.05 1 0.07 0.02 0.13 0.04 0.28 0.04 0.01 0.06 0.01 0.02 0.04 0.01 0.12

11 0.15 0.07 0.15 0.03 0.03 0.16 0.01 0.24 0.07 0.07 1 0.03 0.07 0.16 0.22 0.12 0.14 0 0.19 0.03 0.02 0.07 0.01

12 0.08 0.09 0.01 0.04 0.02 0.02 0.02 0.04 0.13 0.02 0.03 1 0.06 0.09 0.02 0.1 0.09 0 0.02 0.02 0.04 0.08 0.08

13 0.03 0.07 0.02 0.03 0.1 0.05 0.06 0.17 0.07 0.13 0.07 0.06 1 0.16 0.05 0.05 0.05 0.06 0.29 0.1 0.03 0.08 0.07

14 0.28 0.24 0.03 0.17 0.05 0.06 0.09 0.14 0.16 0.04 0.16 0.09 0.16 1 0.03 0.19 0.13 0.08 0.09 0.07 0.24 0.22 0.07

15 0.02 0.06 0.09 0.06 0.07 0.13 0.14 0.2 0.02 0.28 0.22 0.02 0.05 0.03 1 0.04 0.09 0.14 0.06 0.13 0.07 0.01 0.09

16 0.28 0.04 0.09 0 0.03 0.11 0.08 0.14 0.17 0.04 0.12 0.1 0.05 0.19 0.04 1 0.17 0.01 0.16 0.05 0.15 0.2 0.08

17 0.11 0.05 0.04 0.17 0.12 0.13 0.11 0.08 0.15 0.1 0.14 0.09 0.05 0.13 0.09 0.17 1 0.04 0.17 0.12 0.17 0.19 0.2

18 0.01 0.12 0.12 0.06 0.1 0.22 0.02 0.12 0.07 0.06 0 0 0.06 0.08 0.14 0.01 0.04 1 0.02 0.78 0.14 0.1 0.05

19 0.16 0.01 0.2 0.08 0.03 0.2 0.03 0.2 0.06 0.01 0.19 0.02 0.29 0.09 0.06 0.16 0.17 0.02 1 0.04 0.02 0.09 0.04

20 0 0.11 0.07 0.06 0.15 0.17 0 0.11 0.07 0.02 0.03 0.02 0.1 0.07 0.01 0.05 0.01 0.08 0.04 1 0.13 0.1 0.24

21 0.18 0.07 0.05 0.0.258 0.09 0.08 0.01 0.13 0.01 0.04 0.02 0.04 0.03 0.24 0.07 0.15 0.17 0.14 0.02 0.13 1 0.07 0.25

22 0.09 0.22 0.06 0.14 0.05 0.06 0.02 0.05 0.25 0.01 0.07 0.08 0.08 0.22 0.01 0.2 0.19 0.1 0.09 0.1 0.07 1 0.04

23 0.1 0.01 0.09 0.16 0.09 0.05 0.01 0.08 0.01 0.12 0.01 0.08 0.07 0.07 0.09 0.08 0.2 0.05 0.04 0.24 0.25 0.04 1

Supplementary Table 3. Constructed dissimilarity (distance) matrix of 23 proteins based on cellular compartment data via gene ontology. The range 
is between 0 and 1.

Supplementary Table 4.  Dissimilarity matrix based on similarity score of the pair-wise sequence alignment of the 23 designated proteins. The 
range is between 0 and 1. 

 p1 p2 p3 P4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23
p1 0.00 0.70 0.60 0.61 0.60 0.63 0.56 0.65 0.67 0.68 0.51 0.55 0.66 0.61 0.61 0.62 0.61 0.67 0.66 0.67 0.68 0.68 0.58
p2 0.70 0.00 0.74 0.75 0.74 0.76 0.74 0.78 0.80 0.80 0.76 0.46 0.79 0.75 0.75 0.82 0.82 0.80 0.79 0.80 0.80 0.80 0.82
p3 0.60 0.74 0.00 0.03 0.01 0.10 0.20 0.27 0.33 0.25 0.50 0.63 0.36 0.03 0.03 0.41 0.40 0.23 0.31 0.23 0.25 0.25 0.40
p4 0.61 0.75 0.03 0.00 0.03 0.06 0.23 0.24 0.30 0.27 0.47 0.64 0.37 0.01 0.01 0.42 0.41 0.25 0.33 0.25 0.27 0.22 0.41
p5 0.60 0.74 0.01 0.03 0.00 0.10 0.20 0.27 0.33 0.25 0.50 0.63 0.36 0.03 0.03 0.41 0.40 0.23 0.31 0.23 0.25 0.25 0.40
p6 0.63 0.76 0.10 0.06 0.10 0.00 0.28 0.18 0.25 0.27 0.50 0.66 0.41 0.06 0.06 0.45 0.40 0.25 0.32 0.25 0.27 0.17 0.40
p7 0.56 0.74 0.20 0.23 0.20 0.28 0.00 0.32 0.37 0.39 0.42 0.63 0.40 0.23 0.23 0.41 0.40 0.37 0.36 0.37 0.39 0.39 0.40
p8 0.65 0.78 0.27 0.24 0.27 0.18 0.32 0.00 0.19 0.30 0.45 0.68 0.35 0.24 0.24 0.40 0.35 0.28 0.27 0.28 0.30 0.21 0.39
p9 0.67 0.80 0.33 0.30 0.33 0.25 0.37 0.19 0.00 0.35 0.48 0.71 0.40 0.30 0.30 0.44 0.40 0.34 0.32 0.34 0.35 0.27 0.43

p10 0.68 0.80 0.25 0.27 0.25 0.27 0.39 0.30 0.35 0.00 0.53 0.71 0.16 0.27 0.27 0.35 0.17 0.02 0.05 0.02 0.05 0.29 0.34
p11 0.51 0.76 0.50 0.47 0.50 0.50 0.42 0.45 0.48 0.53 0.00 0.63 0.54 0.47 0.47 0.41 0.40 0.52 0.51 0.52 0.53 0.50 0.43
p12 0.55 0.46 0.63 0.64 0.63 0.66 0.63 0.68 0.71 0.71 0.63 0.00 0.70 0.64 0.64 0.74 0.73 0.71 0.70 0.71 0.71 0.71 0.73
p13 0.66 0.79 0.36 0.37 0.36 0.41 0.40 0.35 0.40 0.16 0.54 0.70 0.00 0.37 0.37 0.36 0.22 0.18 0.11 0.18 0.21 0.41 0.38
p14 0.61 0.75 0.03 0.01 0.03 0.06 0.23 0.24 0.30 0.27 0.47 0.64 0.37 0.00 0.01 0.42 0.41 0.25 0.33 0.25 0.27 0.22 0.41
p15 0.61 0.75 0.03 0.01 0.03 0.06 0.23 0.24 0.30 0.27 0.47 0.64 0.37 0.01 0.00 0.42 0.41 0.25 0.33 0.25 0.27 0.22 0.41
p16 0.62 0.82 0.41 0.42 0.41 0.45 0.41 0.40 0.44 0.35 0.41 0.74 0.36 0.42 0.42 0.00 0.20 0.34 0.32 0.34 0.39 0.45 0.16
p17 0.61 0.82 0.40 0.41 0.40 0.40 0.40 0.35 0.40 0.17 0.40 0.73 0.22 0.41 0.41 0.20 0.00 0.20 0.13 0.20 0.21 0.41 0.19
p18 0.67 0.80 0.23 0.25 0.23 0.25 0.37 0.28 0.34 0.02 0.52 0.71 0.18 0.25 0.25 0.34 0.20 0.00 0.08 0.01 0.83 0.27 0.32
p19 0.66 0.79 0.31 0.33 0.31 0.32 0.36 0.27 0.32 0.05 0.51 0.70 0.11 0.33 0.33 0.32 0.13 0.08 0.00 0.08 0.11 0.34 0.30
p20 0.67 0.80 0.23 0.25 0.23 0.25 0.37 0.28 0.34 0.02 0.52 0.71 0.18 0.25 0.25 0.34 0.20 0.01 0.08 0.00 0.83 0.27 0.32
p21 0.68 0.80 0.25 0.27 0.25 0.27 0.39 0.30 0.35 0.05 0.53 0.71 0.21 0.27 0.27 0.39 0.21 0.08 0.11 0.08 0.00 0.29 0.37
p22 0.68 0.80 0.25 0.22 0.25 0.17 0.39 0.21 0.27 0.29 0.50 0.71 0.41 0.22 0.22 0.45 0.41 0.27 0.34 0.27 0.29 0.00 0.44
p23 0.58 0.82 0.40 0.41 0.40 0.40 0.40 0.39 0.43 0.34 0.43 0.73 0.38 0.41 0.41 0.16 0.19 0.32 0.30 0.32 0.37 0.44 0.00


