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Abstract
The goal of many observational studies is to estimate the causal effect of an exposure on an outcome after adjustment for confounders, 
but there are still some serious errors in adjusting confounders in clinical journals. Standard regression modeling (e.g., ordinary 
logistic regression) fails to estimate the average effect of exposure in total population in the presence of interaction between 
exposure and covariates, and also cannot adjust for time-varying confounding appropriately. Moreover, stepwise algorithms of the 
selection of confounders based on P values may miss important confounders and lead to bias in effect estimates. Causal methods 
overcome these limitations. We illustrate three causal methods including inverse-probability-of-treatment-weighting (IPTW) and 
parametric g-formula, with an emphasis on a clever combination of these 2 methods: targeted maximum likelihood estimation 
(TMLE) which enjoys a double-robust property against bias. 
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Introduction
The goal of  many observational researches is to estimate 
the causal effect of  a treatment (e.g. a specific surgical 
technique) or an exposure (e.g. alcohol consumption) on 
an outcome of  interest (e.g. mortality). External variables 
(usually known as confounders) can distort the “causal” 
relationship. This phenomenon is called confounding.1 
The relationship between the exposure and outcome 
is confounded if  the exposure effect is wholly or in 
part attributable to (or masked by) failure to control 
for confounders. Thus, confounders may exaggerate 
or weaken the causal relationship between exposure 
and outcome, or even may induce an apparent causal 
relationship when it does not really exist.2 They should 
be associated with, but not affected by, both exposure 
and outcome, though this is not a sufficient condition.3 
Even randomized clinical trials are subject to random 
confounding i.e., randomization does not prevent 
confounding, but it makes confounding random.4,5 

There are 2 broad approaches for controlling 
confounding at the analysis stage: standard regression 
modeling and causal methods. Standard regression 
methods are widely used in practice, but they suffer from 
some serious limitations. First, they cannot estimate 
the average causal effect of  the exposure in presence 
of  interaction between exposure and covariates, even 
if  the target of  the intervention on the exposure is the 
total population, and the interaction is not of  interest.6,7 

The reason is that these methods assume no interaction 
between exposure and confounders to estimate the 
pooled effect, and in the presence of  interaction, one 
has to report stratum-specific estimates. Moreover, the 
standard regression methods fail to appropriately adjust 
for time-varying confounding, and in fact, they cause 
over-adjustment and collider-stratification biases in the 
presence of  time-varying confounding affected by prior 
treatment.8–11 Causal methods could overcome these 
problems. The aim of  this paper is to illustrate three causal 
methods including inverse-probability-of-treatment-
weighting (IPTW) and parametric g-formula, with an 
emphasis on a clever combination of  these 2 methods: 
targeted maximum likelihood estimation (TMLE). 

Inverse-Probability-of-Treatment-Weighting 
IPTW is based on propensity scores (PSs).1,5,6,12 PS is 
the probability of  exposure given the confounders. 
The weights used in the IPTW method are 1/PS in the 
exposed group and 1/(1 – PS) in the unexposed group.2 
The IPTW method has the following steps:

Step 1
Fit the exposure model i.e., the regression model of 
exposure on confounders using logistic regression or 
more advanced methods such as super learners (see 
below).
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Step 2
Calculate the weight variable W from the exposure model 
fitted in step 1 as follows: W=1/PS for the exposed 
group and W=1/ (1 – PS) for the unexposed group. 

Step 3
Calculate the weighted mean outcome (e.g. risk) in 
the exposed and unexposed groups using weights W 
calculated in step 2, and then calculate the effect measure 
of  interest e.g., risk difference or risk ratio. 

IPTW develops a pseudo-cohort, in which confounders 
do not predict the exposure and the causal effects are 
the same as in the real cohort. Thus the unadjusted 
(crude) analysis which is equivalent to the weighted 
analysis in real cohort, yields an unbiased estimate of  the 
exposure effect assuming that there are no unmeasured 
confounders and PS does not equal 0 or 1.13

PSs are unknown and should be estimated, so that 
IPTW is based on exposure modeling i.e., the exposure is 
regressed on the confounders and then PS and the weights 
are estimated as mentioned in step 1 above. The method 
relies on the assumption that the exposure model is 
correctly specified. So, IPTW is especially recommended 
when the exposure mechanism is known. For example, 
in pharmacoepidemiologic studies, the predictors for 
exposure model are known using drug indications.6 An 
important limitation of  IPTW method is its sensitivity 
to huge weights of  strong predictors of  exposure among 
confounders which can introduce inefficiency and small-
sample bias.14 PSs can also be used in other procedures 
including PS matching (e.g., matching unexposed to the 
exposed based on PS) to estimate the causal effects. 
However most of  these methods cannot be easily 
generalized to more realistic time-varying settings, and so 
we do not explain them here.15–17 

Parametric g-Formula
Parametric g-formula is based on standard outcome 
regression modeling and standardization.6 It is indeed a 
model-based generalization of  classical standardization 
and is also known as model-based standardization.18 
Parametric g-formula has the following steps:

Step 1
Fit the outcome regression model i.e., the regression 
model of  outcome on exposure and confounders. 
Logistic regression (for binary outcomes) or more 
advanced methods such as super learner can be used. 

Step 2
Calculate the standardized mean outcome (e.g. risk) in 
the exposed group (A=1 where A denotes the exposure 
status taking 1 for the exposed and 0 for the unexposed 

groups) by predicting the individual mean outcome for 
exposure forced to be 1 for all individuals, and actual 
values of  confounders, and then average them over the 
individuals from the model fitted in step 1. Similarly, 
calculate the standardized mean outcome (e.g. risk) in 
the unexposed group (A = 0) by predicting the individual 
mean outcome for exposure forced to be 0 for all 
individuals, and actual values of  confounders, and then 
average them over the individuals from the model fitted 
in step 1. Then calculate the effect measure of  interest 
e.g., risk difference or risk ratio. 

Parametric g-formula relies on the correct specification 
of  the outcome model. It is preferred to IPTW if  we 
are confident about the correctness of  the outcome 
model than exposure model, or if  there are huge inverse-
probability-of-treatment weights. Another consideration 
for choosing between IPTW and parametric g-formula is 
the relative frequency of  exposure and outcome which 
may affect sparse-data bias. If  exposure is more common 
than outcome, IPTW is preferred, and if  outcome is 
more common than exposure, parametric g-formula is 
preferred.8,19–21 

Targeted Maximum Likelihood Estimation 
IPTW and parametric g-formula can be combined 
in various ways to produce a double robust causal 
method in the sense that it has 2 possibilities to adjust 
for confounders i.e., the method provides unbiased 
estimate of  causal effect if  either exposure model or 
outcome model is correct. One possibility is TMLE. 
In brief, TMLE first estimates the outcome regression 
model i.e., conditional expectation of  the outcome given 
exposure and confounders. Then, the initial estimate is 
updated using a new covariate that reduces the bias of 
the initial estimate for the target causal parameter. The 
covariate gets information from the exposure model i.e., 
the probability of  the exposure given confounders and 
intended to reduce bias.22-24 The TMLE has the following 
steps:

Step 1
Fit the outcome regression model i.e., the regression 
model of  outcome on exposure and confounders. 
Logistic regression (for binary outcomes) or more 
advanced methods such as super learner can be used. 

Step 2
Fit the exposure model i.e., the regression model of 
exposure on confounders using logistic regression or 
more advanced methods such as super learners.

Step 3
Calculate the variable H from the exposure model fitted 
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in step 2 as follows: 
H = A/PS – ((1-A) /(1 – PS)).

Step 4
Refit the outcome regression model from step 1 by 
adding the variable H, so that the coefficients of  the 
model do not change. This can be done by declaring the 
right hand side of  the outcome model fitted in step 1 as 
“offset” (i.e., a variable whose coefficient is forced to be 
1) in the new model and suppressing the constant. Note 
that variable H equals 1/PS=W for the exposed and -1/
(1-PS) = -W for the unexposed groups.

Step 5
Calculate the standardized mean outcome (e.g. risk) in the 
exposed group (A=1) by predicting the individual mean 
outcome, for exposure forced to be 1 for all individuals, 
and actual values of  confounders, and then average them 
over the individuals from the model fitted in step 4. 
Similarly, calculate the standardized mean outcome (e.g. 
risk) in the unexposed group (A=0) by predicting the 
individual mean outcome, for exposure forced to be 0 
for all individuals, and actual values of  confounders, and 
then average them over the individuals from the model 
fitted in step 4.22–25 Then calculate the effect measure of 
interest e.g., risk difference or risk ratio. 

The steps mentioned above suggest that TMLE is an 
extension of  parametric g-formula in which information 
from IPTW is used, because the variable H is a function 
of  inverse-probability-of-treatment weights for the 
exposed (1/PS) and the (1/(1-PS)) groups. Statistical 
theory tells us that the variable H changes the initial 
estimate in the direction of  the target causal parameter, 
optimizing the bias-variance trade-off  for the parameter 
of  interest. Under the assumption of  no unmeasured 
confounding, TMLE provides unbiased estimates of 
causal effects if  either outcome regression model fitted 
in step 1 or exposure regression model fitted in step 2 
is correct. A recent simulation study25 suggested that 
TMLE performs well even in the presence of  significant 
model misspecifications such as an omitted confounder 
in either exposure or outcome model. Moreover, TMLE 
is efficient if  both of  these models are correctly specified. 
It is generally more efficient than g-formula for the 
parameter of  interest, as g-formula optimizes the bias-
variance trade-off  for the outcome regression model, but 
not the causal parameter of  interest. 

There are other double-robust causal methods like 
TMLE which combine outcome and exposure models 
e.g., weighted parametric g-formula (where the weights 
are inverse-probability-of-treatment weights), augmented 
IPTW (which augments IPTW with a term in the 
outcome model), etc. However, TMLE has shown to be 

superior to these double-robust methods especially in 
terms of  robustness to outliers and data sparsity.22,26 

Confidence intervals for all causal methods can be 
derived using non-parametric bootstrapping in which 
K random samples of  size N (the size of  the study 
sample) are taken from the data set by sampling with 
replacement. All steps of  the causal method are repeated 
in each sample to obtain k causal effect estimates. 
Confidence intervals can be derived using 2.5 percentile 
and 97.5 percentile values of  these K estimates. Another 
common method for deriving confidence intervals is 
using influence function IF which assesses changes 
in causal effect estimator by addition of  each person’s 
profile (i.e., exposure, outcome, and confounders). The 
standard error for the causal effect estimator equals the 
square root of  the estimate of  the sample variance of 
IF (which is calculated for each person) divided by the 
sample size. Confidence intervals and P values can be 
calculated using this estimate of  standard error. Finally, 
robust “sandwich” variance estimators based on the 
observed variability in data, can be used to provide valid 
confidence intervals for IPTW and parametric g-formula 
methods.2 

We have illustrated three causal methods for time-fixed 
cohort studies, but they also can be easily generalized 
to handle time-varying confounding in longitudinal 
studies.27 Moreover, all of  these methods including 
IPTW, parametric g-formula and TMLE can be used 
for case-control studies, but adjustments are needed to 
account for different sampling fractions of  cases and 
controls. Specifically, TMLE can be extended for case-
control studies using case-control weighted TMLE 
in which all steps 1-2 and 4-5 mentioned above are 
weighted with weights equal to the outcome prevalence 
for cases and ((1- outcome prevalence)/control-to-case 
sampling ratio) for controls.23,28 Other generalizations 
include polychotomous and continuous exposures9 
instead of  binary exposures, as well as impact measures 
such as population attributable fraction instead of  effect 
measures.29,30 

Model Specification 
As explained before, all causal methods rely on the 
correct specification of  the models. In particular, IPTW 
and parametric g-formula require correct specification 
of  the exposure and outcome models, respectively. For 
TMLE, either exposure or outcome model needs to 
be correct. Correct specification of  regression model 
requires including minimal sufficient set of  confounders, 
choosing appropriate scale for continuous variables, and 
inclusion of  interaction terms (product terms) between 
predictors (exposure and confounders) if  needed. Since 
data alone say nothing about confounding, minimal 
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sufficient set of  confounders should be determined based 
on subject matter knowledge. They can be conveniently 
derived using causal directed acyclic graphs (causal 
diagrams).15,31 Change-in-estimate criterion can be used 
to exclude unimportant confounders in stepwise manner 
i.e., if  the difference in adjusted and unadjusted estimate 
divided by adjusted estimate is less than 10%.32 However, 
we note that stepwise algorithms of  the selection of 
confounders based on P-values which is often used in 
practice, may miss important confounders and lead to 
bias in effect estimates, so they should not be used for 
the effect estimation. 

There are several modeling approaches to account 
for complex scales and relationships between 
variables including neural network, Bayesian methods, 
classification and regression trees, random forests, 
generalized boosted regression, and generalized additive 
models.22–24,33 Alternatively, fractional polynomial34 and 
spline regression35 can be used to choose appropriate 
scales of  continuous variables in standard regression 
models such as logistic regression. 

A very powerful method for exposure and outcome 
modeling in causal inference is super learning. It 
is a machine learning approach based on a linear 
combination of  several regression modeling approaches 
such as logistic regression, neural network, Bayesian 
approach, classification and regression trees, random 
forests, generalized boosted regression, generalized 
additive models, etc. The optimal weight for contribution 
of  each model is derived so that the mean squared error 
(i.e., the mean of  squared difference between observed 
value of  outcome and predicted value of  outcome by 
the model) using k-fold cross-validation procedure is 
minimized.36 The k-fold cross-validation procedure 
involves partitioning the sample into k subsamples and 
fitting the data on (k-1) subsamples (“training set”) and 
evaluating the fit in the remaining subsample (“validation 
set”). The important point is that performance of  super 
learning in terms of  cross-validated mean squared error 
is better than each included model. 

Software
The causal methods discussed in this paper can be 
performed using general softwares along with the steps 
motioned above. Alternatively, one can use special 
commands in Stata. For example, IPTW can be done 
using teffects ipw command and parametric g-formula 
can be fitted using margins command in Stata. TMLE 
along with super learner can be implemented using eltmle 
stata command as well as tmle R package. All analyses in 
the case study (see below) were performed using Stata 
software, version 13 (Stata Corp, College Station, TX, 
USA) and R software (version 3.4.3). 

Case Study
To illustrate the use of  TMLE for real data, we estimated 
the effect of  preeclampsia on the preterm delivery from 
a cohort of  3000 pregnant women who were referred 
to 103 hospitals for delivery in Tehran province, 2014. 
Preeclampsia was defined as the presence of  high blood 
pressure (a systolic blood pressure ≥140 mm Hg or a 
diastolic blood pressure ≥90 mm Hg after 20 weeks 
of  gestational age) and proteinuria. Preterm delivery 
was defined based on the World Health Organization 
(WHO) as the live birth of  a newborn before 37 weeks 
of  pregnancy are completed. 

The potential confounders included parents’ age, 
mother’s education, mother’s occupation, household 
economic status, pre-pregnancy body mass index (BMI), 
unwanted pregnancy, number of  previous pregnancies, 
number of  previous deliveries, cesarean section, low 
birth weight, maternal weight gain during pregnancy, 
history of  previous abortion(s), and the number of 
previous abortion(s).

We estimated the effect of  preeclampsia on preterm 
delivery using TMLE as the causal method and super 
learning for model specification. P values and 95% CIs 
were derived using influence function (IF) methodology. 
The default super learner algorithms implemented in 
tmle R package were used: (i) SL.step: stepwise forward 
and backward model selection using Akaike information 
criterion (AIC), restricted to quadratic polynomials, (ii) 
SL.glm: ordinary logistic regression without interaction 
terms or polynomials, and (iii) SL.glm.interaction: 
a variant of  logistic regression model that includes 
quadratic polynomials and two-by-two interactions of 
the main terms included in the model. Using TMLE and 
super learning, the causal risk ratio and risk difference 
estimates were 1.64 (95% CI: 1.13– 2.39, P = 0.009), and 
0.055 (95% confidence interval: 0.005, 0.105, P = 0.032), 
respectively. The software also reported an estimate 
of  odds ratio (95% CI) as 1.75 (1.13–2.69). However, 
we warn that odds ratio is not a desirable causal effect 
measure as it overestimates the risk ratio and also 
suffers from a mathematical peculiarity known as non-
collapsibility when the outcome is not uncommon (as is 
the case in our example).37-40 

The contribution of  3 algorithms of  SL.glm, SL.step 
and SL.glm.interaction in super learner for exposure and 
outcome modeling in TMLE are shown in Table 1. It 
highlights that including interaction and quadratic terms 
improves the accuracy of  both models, but stepwise 
selection has nothing to add. 

Discussion
The goal of  many observational studies is to estimate 
the causal effect of  an exposure on an outcome after 
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adjustment for confounders, but there are still errors in 
adjusting confounders in clinical journals: (i) selection 
of  confounders is often based on associations in data at 
hand and selection algorithms like stepwise regression 
which may miss important confounders and lead to 
bias in effect estimates. (ii) Clinical researchers often use 
conditional methods of  adjustment such as regression 
modeling, though these methods fail to estimate the 
average effect of  exposure in total population in the 
presence of  interaction(s) between exposure and 
covariates, and also cannot appropriately adjust for time-
varying confounding. We encourage clinical researchers 
to use causal methods for causal effects estimation. 
Ideally, a double-robust causal method such as TMLE 
should be used along with super learner to avoid model 
misspecification.
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