Eosinophilic Granulomatosis with Polyangiitis in a 4-Year-Old Child: Is Montelukast and/or Clarithromycin a Trigger?

Esma Altinel Acoglu, MD; Fatma Yazilitas, MD; Asuman Gurkan, MD; Eyup Sari, MD; Saliha Senel, MD; Meltem Akcaboy, MD

1Department of Pediatrics, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
2Department of Pediatric Nephrology/Rheumatology, Dr. Sami Ulus Maternity/Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
3Department of Dermatology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey

Received: June 1, 2018, Accepted: December 8, 2018, ePublished: March 1, 2019

Abstract

The aim of the presentation of this case is to discuss whether there is an association with eosinophilic granulomatosis with polyangiitis (EGPA) and the use of montelukast, and clarithromycin and to discuss a successful treatment course. A 4-year-old girl with a preceding history of asthma attacks and increased eosinophil counts was admitted. She had been using clarithromycin for five days and montelukast for a month. She was eventually diagnosed with EGPA with detailed examination. Clinicians should remember EGPA in children with asthma and hypereosinophilia. Patients receiving leukotriene receptor antagonists and/or macrolides should be monitored for developing a multisystem disease. Treatment with immunosuppressive agents may be required to ensure a good prognosis.

Keywords: Children, Churg Strauss syndrome (CSS), Clarithromycin, Eosinophilic granulomatosis with polyangiitis, Montelukast

Cite this article as: Acoglu EA, Yazilitas F, Gurkan A, Sari E, Senel S, Akcaboy M. Eosinophilic granulomatosis with polyangiitis in a 4-year-old child: is montelukast and/or clarithromycin a trigger? Arch Iran Med. 2019;22(3):161–163.

Introduction

Eosinophilic granulomatosis with polyangiitis (EGPA) (Churg Strauss syndrome, CSS) is a rare but potentially life-threatening systemic necrotizing vasculitides predominantly affecting small vessels. It has been rarely reported in children especially before school age.1-3 The optimal treatment of EGPA may be challenging in pediatric patients.1 Here we report a 4-year-old girl with recurrent asthma attacks and eosinophilia who was diagnosed with anti-neutrophil cytoplasmic autoantibody (ANCA)-negative EGPA; (i) to remind EGPA in children with asthma and prominent blood eosinophilia; (ii) to discuss if there is an association between the onset of EGPA and the use of leukotriene antagonist-montelukast and macrolide antibiotic clarithromycin; and (iii) to discuss the treatment course for enlightening specialists regarding future pediatric patients presenting with EGPA.

Case Report

A 4-year-old girl was admitted to our hospital with fever and cough. She had a history of asthma and started inhaled fluticasone for 5 months prior to admission; montelukast for 1 month prior and clarithromycin for 5 days prior to admission. Physical examination revealed temperature at 37.7°C, pulse rate of 90/min, blood pressure at 90/55 mm Hg, respiratory rate of 30/min and O₂ saturation of 92% (room air). Lung auscultation revealed prolonged expiration, rhonchi, inspiratory crackles, and intercostal retraction. On laboratory examination; white blood cell count was 13 500/mm³ with 3780/mm³ eosinophils, hemoglobin was 12.8 g/dL, and platelet count was 288 000/mm³. C-reactive protein was 29 mg/L. The blood chemistry was normal. Chest radiograph showed perihilar, peribronchial infiltration. Inhaled salbutamol and fluticasone, oxygen, and parenteral ampicillin sulbactam treatment were begun. The most common causes of peripheral blood eosinophilia are; atopic/allergic, infectious (particularly parasitic), hematologic/neoplastic, immunologic, and vasculitic diseases. Work-up included stool studies for ova and parasites on 3 consecutive days, serological parasite infection studies (toxocariasis, trichinellosis, ascariasis, fascioliasis echinococcosis), serum specific IgE levels for a variety of foods/aeroallergens, skin-prick tests were performed. These test results were all normal. On the fourth hospitalization day, necrotic maculopapular rash appeared on the soles of the feet. Test for infectious diseases causing rash, coagulation tests, IgG, IgA, IgM, C3, C4, rheumatoid factor, anticardiolipins, anti-double stranded DNA (anti-Ds DNA), anti nuclear antibody (ANA), anti-smooth muscle antibody, antiphospholipid antibody, P-ANCA c-ANCA, bilateral lower extremity arterial-venous Doppler ultrasonography,
Acoglu et al

5 years old. Our patient was in the vasculitic phase when she was 4 decades of life.

The primary therapy for EGPA is systemic glucocorticoid. An immunosuppressive agent may be added in patients with advanced or refractory disease and in patients whose disease flares with tapering of systemic steroids. Azathioprine may be useful in these situations, added in patients with advanced or refractory disease and after myelosuppression.

Discussion

In 1990, the American College of Rheumatology (ACR) proposed 6 criteria for the diagnosis of EGPA. These are: asthma, blood eosinophilia (>10%), neuropathy, transient lung infiltrates, paranasal sinus abnormalities, and extravascular eosinophils on biopsy. The presence of four or more of criteria yields a diagnosis of EGPA with high sensitivity (85%) and specificity (99.7%). Our patient met the diagnosis of EGPA because of having 5 of the 6 ACR criteria (asthma, eosinophilia greater than 10% on differential WBC count, pulmonary infiltrates, sinusitis and eosinophilic vasculitis on skin biopsy). Maxillary sinusitis appears to be more incidental as there were no polyps, pansinusitis, and necrotizing disease.

EGPA typically develops in three phases: the allergic or prodromal phase, the eosinophilic phase in the second and third decade and the vasculitic phase in the third and fourth decades of life. These phases partially overlap and do not appear in a defined order although asthma and chronic rhinosinusitis rarely arise after vasculitic manifestations. Our patient was in the vasculitic phase when she was 4 years old.

EGPA has been included in the spectrum of ANCA-associated vasculitis (AAV) but serum ANCA positivity was relatively low (25%) in children with EGPA. ANCA was also negative in our patient.

The exact etiology of EGPA is unknown. It has been proven that it is associated with HLA-DRB1*04 and *07 and with HLA-DRB4. This suggests a strong CD4+ T lymphocyte activation, possibly triggered by allergens, antigens, infections, and vaccinations. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics.

Discussion

In 1990, the American College of Rheumatology (ACR) proposed 6 criteria for the diagnosis of EGPA. These are: asthma, blood eosinophilia (>10%), neuropathy, transient lung infiltrates, paranasal sinus abnormalities, and extravascular eosinophils on biopsy. The presence of four or more of criteria yields a diagnosis of EGPA with high sensitivity (85%) and specificity (99.7%). Our patient met the diagnosis of EGPA because of having 5 of the 6 ACR criteria (asthma, eosinophilia greater than 10% on differential WBC count, pulmonary infiltrates, sinusitis and eosinophilic vasculitis on skin biopsy). Maxillary sinusitis appears to be more incidental as there were no polyps, pansinusitis, and necrotizing disease.

EGPA typically develops in three phases: the allergic or prodromal phase, the eosinophilic phase in the second and third decade and the vasculitic phase in the third and fourth decades of life. These phases partially overlap and do not appear in a defined order although asthma and chronic rhinosinusitis rarely arise after vasculitic manifestations. Our patient was in the vasculitic phase when she was 4 years old.

EGPA has been included in the spectrum of ANCA-associated vasculitis (AAV) but serum ANCA positivity was relatively low (25%) in children with EGPA. ANCA was also negative in our patient.

The exact etiology of EGPA is unknown. It has been proven that it is associated with HLA-DRB1*04 and *07 and with HLA-DRB4. This suggests a strong CD4+ T lymphocyte activation, possibly triggered by allergens, antigens, infections, and vaccinations. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics. Drugs may also have a pathogenic role. Several reports have described the onset of EGPA in patients receiving leukotriene receptor antagonists (LTRAs) and macrolide antibiotics.

Figure 1. Eosinophilic Vasculitis on Skin Biopsy. The walls of dermal vessels are surrounded densely by lymphocytic and eosinophilic infiltrates. Arrow indicates fibrin which demonstrates blood vessel damage.
glucocorticoids. Azathioprine, cyclophosphamide, methotrexate, leflunomide, inhaled glucocorticoids, mycophenolate mofetil, intravenous immune globulin, rituximab, interferon-alpha, anti-IgE and anti-IL-5 antibodies can be used as immunosuppressive drugs. We used inhaled and systemic glucocorticoids in our patient. But we reduced the systemic glucocorticoid dose due to occurrence of side effects and azathioprine was started. She has been using azathioprine for 10 months with a dramatic clinical remission.

In conclusion, the low prevalence of EGPA in childhood and the successful treatment course make this case of interest. Similar course was reported in the literature following administration of macrolide antibiotics and LRAs, however, further reports are needed to draw a certain conclusion. To report the successful treatment course of our patient may enhance treatment of future pediatric cases. Clinicians should be reminded of EGPA in pediatric patients with asthma/allergy, worsening respiratory symptoms, rash and abnormal eosinophil counts. Asthmatic patients receiving LTRAs/macrolides should be monitored for the appearance of a multisystem disease. Treatment with immunsuppressive agents may be required for good prognosis.

Authors’ Contribution
Authors all participated in drafting the article and revised it critically for important intellectual content. All of them gave final approval of the version to be submitted and the revised version.

Conflict of Interest Disclosures
The authors have no conflicts of interest.

Ethical Statement
The guidelines of the Declaration of Helsinki on medical protocol and ethics were followed in this study. Informed consent was obtained from the parents for publication.

References