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Abstract
Background: Prostate cancer is one of the leading causes of cancer related deaths in males worldwide. Overexpression 
of 15-lipoxygenase-1 (15-LOX-1) enzyme and high activity of its metabolic pathway is reported to be a driver for prostate 
cancer malignancy. Farnesyloxycoumarin derivatives (3f, 4f and 7f) inhibit lipoxygenase enzyme. We hypothesized that 
farnesyloxycoumarins may exert an anti-cancer effect on prostate cancer cells due to their 15-LOX-1 inhibitory potential. 
Methods: The enzyme inhibitory activity of 3f, 4f and 7f was initially evaluated on PC-3 and DU145 prostate cancer cell lines. MTT 
assay was performed on cancer cell lines and HFF3 cell line to assess cytotoxicity of the compounds. The apoptotic morphology 
of cells after treatments was assessed by DAPI staining and single cell gel electrophoresis. Propidium iodide staining was also 
performed to detect cell cycle variations after treatment.
Results: 7f inhibited 15-LOX-1 at IC50 = 4.3 µg/mL, while 3f and 4f did not show high inhibitory activity. 7f reduced cell viability 
in PC-3 cells at IC50 = 22-31 µg/mL, however, no significant cytotoxicity was revealed on normal cells. DAPI staining and comet 
assay confirmed apoptosis and DNA damage in PC-3 cells after 7f treatment, while flow cytometry results revealed G1 arrest in 
PC-3 cells. 
Conclusion: The results are indicative of a distinctive cytotoxic mechanism for 7f compared to other coumarins, possibly due to 
its 15-LOX-1 inhibitory potential. Thus, this compound is valued for further assessments with the aim of developing a promising 
targeted therapy for prostate cancer patients.
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Introduction
Prostate cancer is the most common cancer diagnosed 
in males and the second leading cause of  cancer-related 
deaths in males worldwide.1 Various approaches are 
employed to eradicate this disease including radical 
prostatectomy, hormone therapy, radiotherapy and 
chemotherapy. Limitations and drawbacks in these 
methods have led to a crucial need for targeted therapies.2,3

It has been suggested that excessive use of  animal fats 
and vegetable oils is a risk factor for prostate cancer.4,5 
Arachidonic acid and its precursor, linoleic acid, are 
the main fatty acids present in animal and vegetable 
fats which can be metabolized by lipoxygenase (LOX), 
cyclooxygenase (COX) and P450 epoxygenase (P450 
EOX) pathways.6 Several studies have reported the 
association of  the LOX pathway with some cancers 
especially prostate cancer.7–14 15-lipoxygenase-1 (15-
LOX-1) is a lipid peroxidizing enzyme, active in the LOX 
pathway.15 This enzyme metabolizes linoleic acid, as the 
main substrate, to 13-hydroxyoctadecadienoic acid (13-
(S)HODE).16 A high expression of  15-LOX-1 enzyme 

and high degrees of  its metabolite, 13-(S)HODE, have 
been reported in prostate cancer tissues and cells.17 This 
correlates with prostate cancer invasiveness.18 

The LOX pathway is also active in plants.19–21 It has 
been reported that farnesyloxycoumarin derivatives 
(3-farnesyloxycoumarin (3f), 4-farnesyloxycoumarin (4f) 
and 7-farnesyloxycoumarin (7f)), which are synthesized 
prenylated coumarins, can inhibit soybean LOX.22 
Among these derivatives, 7f  (umbelliprenin) is a natural 
coumarin compound present in various Ferula species.23,24 
This compound has diverse biological properties 
including anti-bacterial and anti-fungal activities.23–25 Its 
anti-inflammatory and immunomodulatory properties 
have been recently shown in immune cells.26 Its anti-
proliferative, anti-tumor27 and apoptosis inducing 
activities28,29 have also been reported in some cancerous 
cell lines. The aim of  this study was to investigate the 
inhibitory activity of  3f, 4f  and 7f  on 15-LOX-1 in 
prostate cancer cells, and subsequently to determine their 
cytotoxicity and anti-cancer effects in vitro. 

Our results indicated that among these three 
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compounds, 7f  was most effective at inhibiting 15-LOX-
1 enzyme in PC-3 prostate cancer cell line, and selectively 
reduced the viability of  cells in a dose-dependent 
manner. DNA damage assays and cell cycle analysis also 
revealed that PC-3 cells displayed apoptotic properties 
after 7f  treatment, and were arrested at G1 phase of  the 
cell cycle. Although 7f  had similar effects to cisplatin, 
which is a commonly used drug for cancer therapy, it did 
not influence the viability of  normal HFF3 cells. These 
results indicate that 7f  could be considered as a potential 
anti-cancer agent in future in vitro and in vivo studies.

Materials and Methods
Cell Culture
Prostate cancer cells (PC-3 and DU145) were purchased 
from Pasteur Institute (Tehran, Iran) and cultured 
in Roswell Park Memorial Institute medium (RPMI-
1640) (Gibco, Scotland), supplemented with 10% 
fetal bovine serum (FBS, Gibco, Scotland).30 Human 
Foreskin Fibroblast (HFF3) normal cells were obtained 
as a generous gift from Royan Institute (Tehran, 
Iran) and cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) (Gibco, Scotland) containing 15% 
FBS.31 Cells were incubated at 37°C and 5% CO2 in a 
humidified atmosphere, and sub-cultured using trypsin-
ethylenediaminetetraacetic acid (EDTA) (1X) (Gibco, 
Scotland) when required.

Enzyme Activity Assessment
PC-3 and DU145 cell lysates were prepared by suspension 
of  cells in Tris buffer (1.5 mL; 0.1 M, pH=7.2) and 
sonication (20 kHz, 3 minutes) (Bandelin-Sonopuls, 
Germany).32 The LOX activity was assessed using kinetic 
method, according to the literatures.33,34 The slope of 
absorbance increasing at 235 nm after addition of  linoleic 
acid (final concentration: 100 µM) to the mixture of  the 
cell lysate (100 µL), Tris buffer (1900 µL; 0.1 M, pH=7.2) 
and inhibitors (3f, 4f  and 7f; final concentrations 1-20 
µg/mL) during 3 minutes, was defined as LOX activity. 
The inhibitory potential of  compounds was reported 
by IC50 values calculated from sigmoidal dose response 
curves.

Umbelliprenin Synthesis
Farnesyloxycoumarin derivatives were synthesized 
as previously described.22 Briefly, a mixture of 
7-farnesyloxycoumarin (5 mmol), farnesyl bromide (6 
mmol) and anhydrous potassium carbonate (0.70 g; 5 
mmol) in dry acetone (3 mL) was refluxed for 12 hours 
and then cooled. The mixture was diluted with water 
(10 mL) and then extracted with ether (2–20 mL). The 
combined extracts were washed with 10% NaOH (2–10 
mL) and dried with anhydrous sodium carbonate. After 

removal of  the solvent the products were purified by 
crystallization from methanol.

Preparation of  Compounds
Farnesyloxycoumarin derivatives (3f, 4f  and 7f) were 
dissolved in DMSO (dimethyl sulfoxide). 15-LOX-1 
inhibitor, 4-MMPB (4-methyl-2-(4-methylpiperazinyl) 
pyrimido[4,5-b]benzothiazine) was purchased from 
Cayman Chemicals (Estonia) and dissolved in HCl. 
Cisplatin was obtained from Sigma-Aldrich (Germany). 
Serial dilutions were prepared to obtain the applied 
concentrations. 

MTT Assay
MTT assay was based on the protocol described for 
the first time by Mosmann,35 and was optimized for cell 
lines used in this study. Briefly, 24, 48 and 72 hours after 
incubation of  DU145, PC-3 and HFF3 cells with various 
concentrations (3, 6.25, 12.5, 25 and 50 µg/mL) of 
different compounds (3f, 4f, 7f, 4-MMPB and cisplatin), 
cells were incubated for 4 hours with 5 mg/mL of  MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide; Sigma-Aldrich, Germany). The purple 
formazan crystals formed by live cells were dissolved in 
DMSO after removing the MTT solution. Absorbance 
of  the DMSO solutions was then recorded at 545 nm 
using an enzyme-linked immunosorbent assay (ELISA)-
reader (Awareness, USA). The half  maximal inhibitory 
concentration values (IC50) were evaluated via sigmoidal 
dose-response curves. All treatments were carried out in 
triplicate. Cisplatin and 4-MMPB (a selective 15-LOX-1 
inhibitor36) were used as positive controls in this study.

Morphological Analysis
PC-3 and HFF3 morphological alterations were observed 
and photographed by means of  an invert microscope 
(ZEISS Axiovert S100, Germany) after treatment with 
IC50 concentrations of  the compounds and equivalent 
controls (0.25% DMSO and 0.25% HCl).

DAPI Staining
Seventy-two hours after treating PC-3 cells with IC50 

concentrations of  7f, 4-MMPB and controls, cells were 
fixed with paraformaldehyde (PFA; Sigma-Aldrich, 
Germany) incubated with triton-X-100 (8 min, Merck, 
Germany) and stained with DAPI (4’,6-diamidino-
2-phenylindole) (Sigma-Aldrich, Germany).37 Cells 
were then observed under a fluorescent microscope 
(Olympus, Japan). 600 to 700 cells were photographed 
per treatment group and the percentage of  cells with 
chromatin condensation was evaluated. Each treatment 
was performed in triplicate. 
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Single Cell Gel Electrophoresis
Seventy-two hours after treatment of  PC-3 and HFF3 
cells with IC50 concentrations of  7f, 4-MMPB and 
controls, treated and untreated cells were subjected 
to alkaline version of  comet assay according to the 
literatures.38–40 300 to 350 cells were photographed per 
treatment group and analyzed using Tri-Tek Comet Score 
1.5 software. The treatments were repeated three times, 
and the percentage of  DNA damage in each treatment 
was evaluated. 

Cell Cycle Analysis
In order to investigate variations in PC-3 cell cycle, 
DNA contents were assessed by staining the cells with 
propidium iodide (PI) (Sigma-Aldrich, Germany),41 72 
hours after treatments (39 µg/mL 7f  and 0.25% DMSO 
control). Cells were then monitored by FACSCalibur 
(Becton Dickinson, USA) and the percentages of  cells 
in the G1, S and G2/M phases of  the cell cycle were 
determined using WinMDI 2.9 software.

Statistical Analysis
Statistical analysis was applied using one-way analysis of 
variance (ANOVA) (Tukey’s multiple comparison test) in 
GraphPad Prism version 4.00 for Windows (GraphPad 
Software, San Diego CA). P-value of  <0.001 was 
considered statistically significant. 15-LOX-1 inhibitory 
activity, cell viability, chromatin condensation and 
DNA damage were presented graphically in the form 
of  histograms using GraphPad Prism version 4.00 for 
Windows.

Results
In order to assess the inhibitory effects of  3f, 4f  and 
7f  on 15-LOX-1 activity in prostate cancer, DU145 and 
PC-3 cell lines were studied for their enzyme activity, and 
PC-3 cells with 20-fold higher 15-LOX-1 activity were 
chosen for further experiments. 3f, 4f  and 7f  inhibitory 
effects were examined on PC-3 cell lysate. In the range of 
concentrations used in this study (1–20 µg/mL), no IC50 
values could be obtained for 3f  and 4f  (data not shown). 
On the other hand, IC50 value for 7f  as evaluated from 
sigmoidal dose-response curve, was calculated as 4.3 µg/
mL (11.8 µM) (Figure 1).

The cytotoxic effects of  various concentrations 
(3, 6.25, 12.5, 25 and 50 µg/mL) of  compounds were 
assessed on PC-3 and HFF3 cells after 24, 48 and 72 
hours, using MTT assay. As shown by MTT assay, 3f  did 
not exhibit any significant cytotoxic effects on PC-3 or 
HFF3 cell lines and no IC50 values were obtained (data 
not shown). On the other hand, 4f  had a dose-dependent 
reduction in cell viability in both cancerous and normal 
cell lines. The IC50 concentrations of  4f  on PC-3 cells 

Figure 1. Dose-Response Curve of 15-LOX-1 Inhibition by 7f in PC-3 
Cells. Enzyme activity was assessed after affecting a 7f concentration 
range of 1-20 µg/mL on cell lysate. The IC50 value of 7f was calculated 
as 4.3 µg/mL by Prism 4.0 software.

were 32, 30 and 22 µg/mL, while IC50 concentrations on 
HFF3 cell line were 22, 16 and 18 µg/mL at 24, 48 and 
72 hours after treatments, respectively (Figure 2, a and 
b). Furthermore, 7f  caused a dose-dependent decrease 
in PC-3 cell viability with IC50 values of  about 37, 35 
and 39 µg/mL (101, 95, 106 µM) after 24, 48 and 72 
hours of  treatments, respectively. However, 7f  did not 
have any significant cytotoxic effects on HFF3 normal 
cells (Figure 2, c and d). The effects of  7f  on PC-3 cells 
were similar to cisplatin as assessed by MTT assay (data 
not shown). The 4-MMPB IC50 values obtained for PC-3 
cell line were 25, 16 and 13 µg/mL, and for HFF3 cells 
were calculated as 80, 41 and 31 µg/mL after 24, 48 and 
72 hours, respectively (Figure 2, e and f). 

Morphological assessment of  PC-3 cells treated with 
IC50 concentrations of  7f  revealed significant cell death 
and cytoplasmic granulation, whereas no morphological 
changes were observed in HFF3 cells treated with the 
same concentrations of  7f  (Figure 3).

DAPI staining revealed apoptotic properties as 
indicated by condensed chromatin and/or fragmented 
nuclei in 7f  and 4-MMPB treated cells, and the percentages 
of  chromatin condensation formed in these cells had a 
significant difference with the control groups (P < 0.001) 
(Figure 4). Comet assay indicated large amounts of  DNA 
strand breaks generated after incubation of  PC-3 cells 
with either compound, however, treating HFF3 cells with 
7f  induced insignificant DNA strand breaks, as analyzed 
by the standard comet assay. Comet moments formed 
in PC-3 cells treated with 7f  and 4-MMPB (40.61% 
and 43.40% DNA in tail, respectively) had a significant 
difference compared to control samples and HFF3 cells 
(P < 0.001) (Figure 5). 

In order to investigate changes in PC-3 cell cycle 
after treatments (39 µg/mL 7f  and 0.25% DMSO) flow 
cytometry was performed after PI staining. As can be 
observed in Figure 6, the results were indicative of  G1 
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arrest in cell cycle after 7f  treatment.

Discussion
Several studies have shown a correlation between the 
LOX pathways and various cancers especially prostate 
cancer.8,12,42–47 High degrees of  12/15-LOX mRNA is 
reported to have a positive correlation with invasion in 
prostate cancer cells.8 Overexpression of  12/15-LOX 
in PC-3 cells generated more invasive tumors in mice.12 
Moreover, Timar et al reported high expression of 
12/15-LOX in metastatic prostate cancer cell lines.14 In 

this study, since enzyme assay revealed a 20-fold higher 
activity of  15-LOX-1 in PC-3 cells compared to DU145, 
further experiments were carried out on PC-3 cell line. 
Spindler et al have also reported a high expression of  15-
LOX-1 in prostate cancer tissues and likewise in PC-3 and 
LNCap cell lines. Furthermore, they reported a higher 
degree of  13-(S)HODE (15-LOX-1 product) in PC-3 
cells compared to LNCap cells.17 Additionally, Kelavkar et 
al reported that the amount of  15-LOX-1 expression has 
a positive correlation with the invasiveness of  prostate 
cancer cells.18 Since the overexpression of  LOX pathway 

Figure 2. Cancerous and Normal Cell Dose-Response Curves for Each of Farnesyloxycoumarin Agents After MTT Assay. Sigmoidal graphs 
exhibit 4f (a and b), 7f (c and d) and 4-MMPB (e and f) effects on PC-3 and HFF3 cell lines, respectively, 24, 48 and 72 h after treatments. 
IC50 values were obtained by means of Prism 4.0 software. Results are expressed as mean ± SD for IC50 values obtained from three to five 
repeats for each individual compound.

Figure 3. Representative Photomicrographs Showing the Morphological Changes of PC-3 and HFF3 Cells in Response to Various Treatments. 
PC-3 (a-e) and HFF3 (f-i) cells were photographed 72 h after treatments. Untreated cells (a and f), cells treated with 0.25% DMSO (b and g), 
cells treated with 39 µg/mL 7f (c and h), cells treated with 0.25% HCl (d), cells treated with 13 µg/mL 4-MMPB (e) and 31 µg/mL 4-MMPB 
(i) are indicated.
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mediators results in invasiveness of  cancer cells, some 
studies have focused on mediators’ inhibition in prostate 
cancer. The inhibition of  5-LOX pathway in prostate 
cancer cell lines, caused cell growth inhibition in PC-3 and 
LNCap cell lines,9,10 and also induced apoptosis in PC-3 
cells.7 In addition, 12-LOX inhibition in PC-3 and DU145 
cells resulted in decreased proliferation, apoptosis and 
G0/G1 arrest in these cells.13 In vitro and in vivo studies of 
15-LOX-1 inhibition in PC-3 cell line have also revealed 
a decrease in cell proliferation.48 15-LOX-1 product, 

Figure 4. DAPI Staining of Nuclei Indicating Chromatin Conden-
sation in PC-3 Cells. Figures indicate untreated PC-3 cells (a), 
cells treated with 39 µg/mL 7f (b), and cells treated with 13 µg/
mL 4-MMPB (c). Chromatin condensation is indicated by arrows. 
d) Histogram of mean percentage of cells with chromatin conden-
sation after each treatment. Data are shown as mean ± SD. Chro-
matin condensation percentages were compared using one-way 
ANOVA (Tukey’s multiple comparison test) in Prism 4.0 software. 

Figure 6. Cell Cycle Profile of PC-3 Cells After Treatment with 
Umbelliprenin. Percentage of cells in cell cycle phases are 
indicated after 72 h in untreated cells (a), cells treated with 
0.25% DMSO (b) and cells treated with 39 µg/mL umbelliprenin 
(c). Note that the higher percentage of cells in G1 phase after 
umbelliprenin treatment indicates G1 arrest in cell cycle.

Figure 5. DNA Damage in PC-3 Cells as Revealed by Alkaline 
Comet Assay. Indicated are untreated cells (a), cells treated with 
39 µg/mL 7f (b) and cells treated with 13 µg/mL 4-MMPB (c) (ar-
rows indicate damaged DNA in comet tail). (d) Histogram of DNA 
damage in cells 72 h after treatments. Data are shown as mean ± 
SD and were compared using one way ANOVA (Tukey’s multiple 
comparison test) in Prism 4.0 software. 

a b

c d

a b

dc

c
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13(S)HODE, is known to be a ligand for peroxisome 
proliferator-activated receptor gamma (PPARγ).49,50 
13(S)HODE activates MAP-Kinase pathway in prostate 
cancer, which can reduce the activity of  PPARγ51,52 leading 
to PC-3 and DU145 proliferation.53–55 13(S) HODE 
can also increase IGF-1R expression, resulting in high 
proliferation and migration in prostate cancer.56 These 
studies indicate that by inhibiting 15-LOX-1 enzyme, cell 
proliferation could be decreased. In this study, 15-LOX-1 
inhibitory potency of  three farnesyloxycoumarins (3f, 4f 
and 7f) was investigated in prostate cancer cells. Results 
indicated enzyme activity inhibition of  7f  at IC50=11.8 
µM, exceeding 3f  and 4f  inhibitory activity. This method 
has also been used to inhibit soybean LOX activity with 
several synthetic prenylated coumarins.22

3f  did not show any significant cytotoxic effects 
on either PC-3 or HFF3 cells whereas 4f  exhibited 
cytotoxicity on both cancerous and normal cells. 
Unlike 3f  and 4f, 7f  had a selective cytotoxic effect on 
these cells, since no significant decrease in HFF3 cell 
proliferation was detected after 7f  treatment as shown 
in the photomicrographs (Figure 3). 7f  exhibited similar 
cytotoxic results on PC-3 cells as compared to cisplatin 
which was used as a positive control in this study. To 
note, cisplatin has been used as an anti-cancer agent 
and also as a positive control in several studies.57–60 
5-farnesyloxycoumarin and 8-farnesyloxycoumarin have 
shown similar cytotoxic properties in prostate cancer 
cells.61,62 Cytotoxic effects of  7f  (umbelliprenin) have 
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been tested on various cell lines such as M4Beu (metastatic 
melanoma), QU-DB and A549 (lung cancer), Jurkat 
(leukaemia), SK-MEL-28 (melanoma) and CH1 (ovarian 
carcinoma), which in all cases indicated a cytotoxic and 
anti-tumor activity.27–29,63 Umbelliprenin encapsulated by 
nanoliposome has also revealed high cytotoxicity on 4T1 
(mouse breast cancer) cell line.64

7f  and 4-MMPB-treated PC-3 cells had a high 
percentage of  chromatin condensation as revealed by 
DAPI staining, showing a significant difference with 
controls (P < 0.001). To note, chromatin condensation 
and nuclear fragmentation have long been reported as the 
main characteristics of  apoptosis.65–67 DAPI staining has 
been used to detect apoptosis in other studies which apply 
anti-cancer agents such as cisplatin,40, 68–72 etoposide,69 
vincristine,73–77 vinblastine, doxorubicin73 and paclitaxel.78 
DNA damage in cells was assessed by comet assay on 
PC-3 and HFF3 cell lines. PC-3 cells treated with 7f 
and 4-MMPB indicated high amounts of  DNA damage 
compared to cells treated with control solvents and also 
normal HFF3 cells (P < 0.001), indicating a selective 
genotoxic effect of  7f  on cancerous cells. Comet assay is 
a sensitive genotoxicity test39 that has been used to detect 
DNA damage in cancer cells in many studies.40,71,79–83 
These data suggest that 7f  can be assumed as an anti-
cancer and apoptosis inducing compound.

The effects of  7f  on cell cycle revealed G1 arrest in PC-3 
cells 72 h after treatment. 7f  affects gastric cancer cells in 
a similar manner.84 Likewise, coumarin and its derivatives 
e.g. scopoletin, 7-hydroxycoumarin and decursin also 
cause G1 arrest in treated cells.85–88 Studies have declared 
that cisplatin also exerts its cytotoxic effects via cell cycle 
arrest at G1 phase.89,90 The reason for G1 arrest is still 
controversial, but studies have shown reduced RAS and 
Myc gene expression by use of  coumarins.91,92 G1 arrest 
is also suggested to be due to activation of  P53 and on-
going activation of  WAF1/CIP1, a cyclin dependent 
kinase inhibitor.93,94 In a study, the amounts of  cyclin 
dependent kinase inhibitors such as CIP/P21 and KIP/
P27 were elevated after treatment with decursin.88 Other 
studies also claimed that treating HL-60 and A427 cells 
with 7-hydroxycoumarin and esculetin respectively, 
could result in downregulation of  cyclin D1.95,96 Chuang 
et al stated that coumarin could decrease the amounts 
of  cyclin D1, Cdk2, P15 and Cdc25A whereas it could 
increase P21 and P53 proteins.85 Oxypeucedanin also 
caused a decrease in Cdc25C, Cyclin A, Cyclin B1 and 
Cdc-2 in DU145 cells.97 All these studies suggest that 
coumarin compounds exert their effects by activating P53 
pathway. Similarly, a study has reported upregulation of 
P53 and p21/WAF1/CIP1 after treatment with cisplatin, 
and has claimed that cisplatin may have a P53 dependent 
mechanism,90 thus 7f  might have similar effects to 

cisplatin. Moreover, some studies claim that 7f  induces 
G1 arrest through a caspase dependent manner28 which 
is due to its prenyl group on the umbelliferone ring.24,82 
7f  is also reported as an MMP (matrix metalloproteinase) 
inhibitor,98 which might be the reason for its anti-cancer 
effects. 

In conclusion, our results indicated that 
7-farnesyloxycoumarin inhibited 15-LOX-1 activity 
and exerted selective cytotoxic and anti-cancer effects 
on PC-3 cells. We further showed that 7f  had similar 
cytotoxic effects on PC-3 cells as compared to cisplatin, 
which is extensively used in the clinic. Considering the 
fact that 4-MMPB (a selective 15-LOX-1 inhibitor) had 
similar effects on PC-3 cells, the anti-cancer effects of 
7f  might be due to its 15-LOX-1 inhibitory activity. 
Nevertheless, to understand the exact mechanism 
underlying this event, further studies are required. It 
is noteworthy that 7f  could be extracted from various 
Ferula species,23,24 making it a natural potential anti-cancer 
agent which is valued for future studies.
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