Arch Iran Med. March 2023;26(3):147-155 10.34172/aim.2023.23 http://journalaim.com

Supplementary file 1

Linear mixed effects model

As preliminary analyses showed, there are different intercepts and growth slopes in conflict rates for the provinces under study. Therefore, a linear mixed effects model was applied to evaluate the trend of mean rate in these provinces from 2014 to 2020. This trend has a linear reduction from 2014 to 2017 and a slight linear growth until 2020 (Figure 1). So, we assume a piecewise linear mixed effects model with a knot in 2017. This model has an intercept and two slopes (one slope for changes in the mean rate before 2017, another for after 2017) which can be specified as:

$$\mathbf{E}(\mathbf{Y}_{ij}|b_i) = \beta_1 + \beta_2 \operatorname{time}_{ij} + \beta_3 (\operatorname{time}_{ij})_+ + b_{1i} + b_{2i} \operatorname{time}_{ij} + b_{2i} (\operatorname{time}_{ij})_+$$

Where time_{ij} denotes year of jth measurement on the ith province before or after 2017, (time_{ij})₊ = time_{ij} if time_{ij}>2017 and (time_{ij})₊ = 0 if time_{ij} \leq 2017. (β_1 + b_{1i}) is intercept for ith province, (β_2 + b_{2i}) and {(β_2 + β_3) + (b_{2i} + b_{3i})} are the ith province's slope before and after 2017 (18, 19)

Growth Mixture Model (GMM)

$$y_{it}^{k} = \eta_{i0}^{k} + \eta_{i1}^{k}\lambda_{t}^{k} + \varepsilon_{it}^{k}$$
$$\eta_{i0}^{k} = \eta_{00}^{k} + \sum_{j}\beta_{01j}^{k}x_{j} + \varsigma_{i0}^{k}$$
$$\eta_{i1}^{k} = \eta_{10}^{k} + \sum_{j}\beta_{11j}^{k}x_{j} + \varsigma_{i1}^{k}$$

Where y_{it}^k is conflict rate for the ith province at time t; η_{i0}^k and η_{i1}^k are latent variables, λ_t^k is time score which can be specified as linear, nonlinear polynomial functions of time or free time

scores; ε_{it}^k is residual term for ith country at time t; η_{00}^k and η_{10}^k are intercept coefficients representing the model estimated overall mean levels of initial and average rate of conflict change over time; β_{01j}^k and β_{11j}^k are slope coefficients of covariates x_j ; ς_{i0}^k and ς_{i1}^k are error terms (23, 24).