Multiple Brain Tuberculomas in a 32-year-old Woman with Chronic Headache

Fatemeh Ahmadi MD1, Roohangiz Nashibi MD1, Masih Naghieh MD2, Jalil Feizi MD2, Mohammad Shirmardi PhD candidate1

Abstract

Tuberculosis (TB) has re-emerged in the past two decades as a major health problem worldwide. Presently, more than 2 billion people (one third of the world population) are infected with TB, of which approximately 10% will develop the clinical disease. The incidence of central nervous system (CNS) TB is related to the prevalence of TB in the community, and it is still the most common type of chronic CNS infection in developing countries. We describe a 32-year-old woman, who presented with chronic headache, followed by gaze palsy and decreased level of consciousness. The disease was diagnosed through TB PCR of the cerebrospinal fluid (CSF). Anti TB drugs and corticosteroid were started for her and she responded successfully to treatment. We conclude that TB of CNS should be considered in patients with chronic headache, particularly in endemic regions because its diagnosis may be missed.

Keywords: Brain tuberculosis, chronic headache, tuberculosis

Introduction

Brain tuberculosis is a rare manifestation of TB which may originate from Rich foci in the CNS.1,2 Although there are many laboratory tests, its diagnosis may be difficult.1 When tuberculosis is accompanied by meningitis, the diagnosis could be made early on3; otherwise, it may be missed. Here, we report a case of brain tuberculosis with review of the literature about the signs, symptoms, diagnosis, and treatment of this disease.

Case report

A 32-year-old woman was admitted to Razi Hospital, Ahvaz, in October 2010, complaining of chronic progressive headaches since two months before admission. The patient had no history of previous disease or drug use. On physical examination, she had a low-grade fever (<38.5°C), blood pressure was 100/70 mmHg and her pulse rate was 80 beats per minute. She had neck stiffness, with positive Kernig’s and Brudzinski’s signs as well as lateral gaze palsy in the right eye.

Chest examination was normal, and the patient had no clinical evidence of systemic disease. The laboratory data were as follows: CBC showed normal values, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were 24 mm/h and 3+, respectively. Viral markers were negative and liver function tests (LFT) were in the normal range. Chest X-ray was normal and TB skin test showed negative result. Her CSF fluid analysis showed: RBC 40, WBC 100 /mm³ and lymphocytic dominant in pleocytosis (60% lymphocyte and 40% PMN). Simultaneously, CSF protein, CSF glucose, and blood sugar were 57 mg/dL, 19 mg/dL, and 95 mg/dL, respectively. The CSF adenosine deaminase (ADA) was 5 U/L. Brucella antibody (IgM and IgG) and cytology of the CSF were negative.

The day after admission, her level of consciousness decreased; she was intubated and transferred to ICU. At first, brain CT scan without contrast showed no specific changes, but MRI with administration of IV gadolinium revealed multiple tuberculomas in brain parenchyma (Figures 1A and 1B). No other focus of TB was identified. Finally, the PCR of her CSF showed positive result. Isoniazid, rifampin, pyrazinamide, streptomycin, and corticosteroid were started for her. Treatment resulted in resolution of her symptoms and gaze palsy. The patient’s level of consciousness improved and she was then extubated and transferred to the ward. Treatment with four drugs was continued for 2 months, followed by isoniazid and rifampin for 10 months. Follow-up, including comprehensive clinical and neurologic examination, was undertaken for two years and she remained symptom-free throughout the time.

Discussion

TB can become disseminated before full action of cell-mediated immunity in primary infection,2 and the bacilli could remain alive in caseous tubercles in the CNS (the so-called Rich foci) for several years after primary infection. If these foci rupture, TB meningitis or tuberculosis (rupture into the brain or spinal cord) will develop. When brain tuberculomas are associated with meningitis, the diagnosis is more apparent and would be discovered early.3 However, there are usually some difficulties in making the diagnosis of CNS tuberculosis.1 Half of the patients show no clinical signs of involvement in sites other than the CNS.4 Abnormal neu-
rologic findings usually appear from stage 2 of the disease (con-
fusion, cranial-nerve palsies, or hemiparesis) that mimic many
other disorders.1,8 Normal chest X-rays do not rule out the
possible existence of brain tuberculosis.5,9 In a series of 70 pa-
ients with brain tuberculosis, only 30.8% revealed a positive chest
radiograph.7 CT is reported to have a negative predictive value
of 35%, indicating a need for further analysis with MRI and/or
histological diagnosis.10 Without contrast enhancement on MRI,
the images are generally insensitive for detection of both men-
ingeal inflammation and tuberculosis.11 Although abnormalities
on CT and MRI scanning are common (in 70%–80% of patients),
they are usually nonspecific.12,13 Furthermore, at each stage, tu-
berculoma has many differential diagnoses.3,8,9 CSF analysis may
be normal at first, and 25% of patients would never manifest
the classic CSF changes (lymphocytic pleocytosis, elevated protein
levels, and low glucose levels). CSF ADA level is not valuable in
diagnosis as it also raises in other types of CNS infections, such
as pyogenic meningitis.14 CSF smears for acid-fast bacilli (AFB)
are positive in only 20% of the cases,1 and the sensitivity of PCR
is 30%–80%.15,16 CSF culture for TB (the gold standard test) takes
a long time to complete and is negative in half of all patients.
Considering all these and the low potential harm of anti-TB drugs
(0.1% risk of fatal hepatitis)17 if there is any uncertainty about
diagnosis, empirical treatment is recommended, especially in en-
demic regions - as in the case of our patient for whom we started
therapy before the PCR result. On the other hand, empirical treat-
ment should be given even if the suspicion of CNS tuberculosis is
low. Corticosteroid treatment is also recommended (as adjunctive
treatment) for CNS tuberculosis.18,19

Conclusion

The signs and symptoms of brain involvement with tuberculosis
maybe insidious and its diagnosis is likely to be missed. There-
fore, TB should be considered in chronic headaches, particularly
in endemic regions.

Acknowledgment

We thank our co-workers in the department of infectious dis-
eses in Razi Hospital for their help in treating the patient.

References

1. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC,
Control and Prevention/Infectious Diseases Society of America: treat-
2. Sarmiento OL, Weigle KA, Alexander J, Weber DJ and Miller WC.
Assessment by meta-analysis of PCR for diagnosis of smear-negative
Tuberculosis and Nontuberculous Mycobacterial Infections. 4th ed.
4. Draouat S, Abdenabi B, Ghanem M, Bourjat P. Computed tomogra-
5. Jinkins JR. Computed tomography of intracranial tuberculosis. Neuro-
MM. CT of the brain in tuberculous meningitis. A review of 289 pa-
M, Maddrey W, eds. Schiff’s Diseases of the Liver. 9th ed. Philadelphia:
Lippincott Williams & Wilkins; 2003: 1059 – 1127.
DTPA enhanced MR imaging in intracranial tuberculosis. Neuroradi-
75 – 81.
G, et al. MRI in tuberculous meningoencephalitis: report of four cases
344.
14. Nguyen LN, Kox LF, Pham LD, Kuijer S and Kolk AH. The poten-
tial contribution of the polymerase chain reaction to the diagnosis of
of computed tomography-based diagnosis of intracranial tuberculoma-
16. Calabrese LH, Furlan AJ, Gragg LA, Ropos TJ. Primary angitis of
the central nervous system: diagnostic criteria and clinical approach.
D, eds. Infections of the Central Nervous System. Philadelphia: Lip-
18. Kennedy D, Fallon R. Tuberculous meningitis. JAMA. 1979; 241:
264 – 268.
19. Corral I, Quereda C, Navas E, Martín-Dávila P, Pérez-Ellas MJ, Casa-
do JL, et al. Adenosine deaminase activity in cerebrospinal fluid of
HIV-infected patients: limited value for diagnosis of tuberculous